tohur commited on
Commit
6b9ecab
·
verified ·
1 Parent(s): 07e3a8e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +108 -3
README.md CHANGED
@@ -1,3 +1,108 @@
1
- ---
2
- license: llama3.1
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: tohur/natsumura-assistant-1.1-llama-3.1-8b
3
+ license: llama3.1
4
+ datasets:
5
+ - tohur/natsumura-identity
6
+ - cognitivecomputations/dolphin
7
+ - tohur/ultrachat_uncensored_sharegpt
8
+ - cognitivecomputations/dolphin-coder
9
+ - tohur/OpenHermes-2.5-Uncensored-ShareGPT
10
+ - tohur/Internal-Knowledge-Map-sharegpt
11
+ - m-a-p/Code-Feedback
12
+ - m-a-p/CodeFeedback-Filtered-Instruction
13
+ - cognitivecomputations/open-instruct-uncensored
14
+ - microsoft/orca-math-word-problems-200k
15
+ ---
16
+ # natsumura-assistant-1.1-llama-3.1-8b-GGUF
17
+ This is my Storytelling/RP model for my Natsumura series of 8b models. This model is finetuned on storytelling and roleplaying datasets so should be a great model
18
+ to use for character chatbots in applications such as Sillytavern, Agnai, RisuAI and more. And should be a great model to use for fictional writing. Up to a 128k context.
19
+
20
+ - **Developed by:** Tohur
21
+ - **License:** llama3.1
22
+ - **Finetuned from model :** meta-llama/Meta-Llama-3.1-8B-Instruct
23
+
24
+ This model is based on meta-llama/Meta-Llama-3.1-8B-Instruct, and is governed by [Llama 3.1 Community License](https://github.com/meta-llama/llama-models/blob/main/models/llama3_1/LICENSE)
25
+ Natsumura is uncensored, which makes the model compliant.It will be highly compliant with any requests, even unethical ones.
26
+ You are responsible for any content you create using this model. Please use it responsibly.
27
+
28
+
29
+ ## Usage
30
+
31
+ If you are unsure how to use GGUF files, refer to one of [TheBloke's
32
+ READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for
33
+ more details, including on how to concatenate multi-part files.
34
+
35
+ ## Provided Quants
36
+
37
+ (sorted by quality.)
38
+
39
+ | Quant | Notes |
40
+ |:-----|:-----|
41
+ | Q2_K |
42
+ | Q3_K_S |
43
+ | Q3_K_M | lower quality |
44
+ | Q3_K_L | |
45
+ | Q4_0 | |
46
+ | Q4_K_S | fast, recommended |
47
+ | Q4_K_M | fast, recommended |
48
+ | Q5_0 | |
49
+ | Q5_K_S | |
50
+ | Q5_K_M | |
51
+ | Q6_K | very good quality |
52
+ | Q8_0 | fast, best quality |
53
+ | f16 | 16 bpw, overkill |
54
+
55
+ # use in ollama
56
+ ```
57
+ ollama pull Tohur/natsumura-storytelling-rp-llama-3.1
58
+ ```
59
+
60
+ # Datasets used:
61
+ - tohur/natsumura-identity
62
+ - cognitivecomputations/dolphin
63
+ - tohur/ultrachat_uncensored_sharegpt
64
+ - cognitivecomputations/dolphin-coder
65
+ - tohur/OpenHermes-2.5-Uncensored-ShareGPT
66
+ - tohur/Internal-Knowledge-Map-sharegpt
67
+ - m-a-p/Code-Feedback
68
+ - m-a-p/CodeFeedback-Filtered-Instruction
69
+ - cognitivecomputations/open-instruct-uncensored
70
+ - microsoft/orca-math-word-problems-200k
71
+
72
+ The following parameters were used in [Llama Factory](https://github.com/hiyouga/LLaMA-Factory) during training:
73
+ - per_device_train_batch_size=2
74
+ - gradient_accumulation_steps=4
75
+ - lr_scheduler_type="cosine"
76
+ - logging_steps=10
77
+ - warmup_ratio=0.1
78
+ - save_steps=1000
79
+ - learning_rate=2e-5
80
+ - num_train_epochs=3.0
81
+ - max_samples=500
82
+ - max_grad_norm=1.0
83
+ - quantization_bit=4
84
+ - loraplus_lr_ratio=16.0
85
+ - fp16=True
86
+
87
+ ## Inference
88
+
89
+ I use the following settings for inference:
90
+ ```
91
+ "temperature": 1.0,
92
+ "repetition_penalty": 1.05,
93
+ "top_p": 0.95
94
+ "top_k": 40
95
+ "min_p": 0.05
96
+ ```
97
+
98
+ # Prompt template: llama3
99
+
100
+ ```
101
+ <|begin_of_text|><|start_header_id|>system<|end_header_id|>
102
+
103
+ {system_prompt}<|eot_id|><|start_header_id|>user<|end_header_id|>
104
+
105
+ {input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>
106
+
107
+ {output}<|eot_id|>
108
+ ```