Taishi-N324
commited on
Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
- ja
|
5 |
+
library_name: transformers
|
6 |
+
pipeline_tag: text-generation
|
7 |
+
model_type: mistral
|
8 |
+
license: apache-2.0
|
9 |
+
---
|
10 |
+
|
11 |
+
# Swallow-MS-7b-v0.1
|
12 |
+
|
13 |
+
Our Swallow-MS-7b-v0.1 model has undergone continuous pre-training from the Mistral-7B-v0.1, primarily with the addition of Japanese language data. **The instruction tuning version will be released soon.**
|
14 |
+
|
15 |
+
![logo](./logo.png)
|
16 |
+
|
17 |
+
## Model Details
|
18 |
+
|
19 |
+
* **Model type**: Please refer to Mistral technical report for details on the model architecture.
|
20 |
+
* **Language(s)**: Japanese English
|
21 |
+
* **Tokenizer**: This model employs a tokenizer that features a broadened vocabulary based on Japanese data. This allows for a more efficient representation of text using fewer tokens, leading to a notably faster inference process.
|
22 |
+
* **Contact**: swallow[at]nlp.c.titech.ac.jp
|
23 |
+
|
24 |
+
## Base Model Performance
|
25 |
+
|
26 |
+
### Japanese version
|
27 |
+
|Model|Size|JCommonsenseQA|JEMHopQA|NIILC|JSQuAD|XL-Sum|MGSM|WMT20-en-ja|WMT20-ja-en|Average|
|
28 |
+
|---------------------------|-------|---------|-------|-------|-------|------|------------|------------|------|-----|
|
29 |
+
| | |4-shot|4-shot|4-shot|4-shot|1-shot|4-shot|4-shot|4-shot||
|
30 |
+
| CyberAgentLM2-7B |7B| 0.2198 | 0.5047 | 0.5066 | 0.7799 | 0.0233 | 0.0600 | 0.2345 | 0.1499 | 0.3098 |
|
31 |
+
| Llama 2 |7B| 0.3852 | 0.4240 | 0.3410 | 0.7917 | 0.1905 | 0.0760 | 0.1783 | 0.1738 | 0.3201 |
|
32 |
+
| japanese-stablelm-base-beta-7b|7B| 0.3610 | 0.4478 | 0.4432 | 0.8318 | 0.2195 | 0.0720 | 0.1946 | 0.1226 | 0.3366 |
|
33 |
+
| japanese-stablelm-base-ja_vocab-beta-7b|7B| 0.2172 | 0.4482 | 0.4309 | 0.8202 | 0.0757 | 0.0520 | 0.1601 | 0.1453 | 0.2937 |
|
34 |
+
| ELYZA-japanese-Llama-2-7b|7B| 0.5791 | 0.4703 | 0.4019 | 0.8226 | 0.1312 | 0.0600 | 0.1795 | 0.1289 | 0.3467 |
|
35 |
+
| ELYZA-japanese-Llama-2-7b-fast|7B| 0.5308 | 0.4330 | 0.3898 | 0.8131 | 0.1289 | 0.0720 | 0.1678 | 0.1143 | 0.3312 |
|
36 |
+
| youri-7b (base) |7B| 0.4620 | 0.4776 | 0.4999 | 0.8506 | 0.1957 | 0.0640 | 0.2671 | **0.1971** | 0.3768 |
|
37 |
+
| Swallow-7b |7B| 0.4808 | 0.5078 | 0.5968 | 0.8573 | 0.1830 | 0.1240 | 0.2510 | 0.1511 | 0.3940 |
|
38 |
+
| Swallow-7b-plus |7B| 0.5478 | **0.5493** | **0.6030** | 0.8544 | 0.1806 | 0.1360 | 0.2568 | 0.1441 | 0.4090 |
|
39 |
+
| Qwen-7B |7B| 0.7712 | 0.4234 | 0.2376 | 0.8594 | 0.1371 | 0.2160 | 0.1689 | 0.1801 | 0.3742 |
|
40 |
+
| nekomata-7b |7B| 0.7417 | 0.4928 | 0.5022 | 0.8707 | 0.1676 | 0.1240 | **0.2673** | 0.1815 | 0.4185 |
|
41 |
+
| Mistral-7B-v0.1 |7B| 0.7301 | 0.4245 | 0.2722 | 0.8563 | 0.2006 | 0.1760 | 0.1405 | 0.1733 | 0.3717 |
|
42 |
+
| japanese-stablelm-base-gamma-7b|7B| 0.7364 | 0.4643 | 0.5568 | **0.8910** | **0.2293** | 0.1680 | 0.2390 | 0.1561 | 0.4301 |
|
43 |
+
| Swallow-MS-7b-v0.1 |7B| **0.8570** | 0.4915 | 0.5519 | 0.8802 | 0.1988 | **0.2240** | 0.2494 | 0.1667 | **0.4524** |
|
44 |
+
|
45 |
+
|
46 |
+
### English version
|
47 |
+
|
48 |
+
|Model|Size|OpenBookQA|TriviaQA|HellaSwag|SQuAD2.0|XWINO|GSM8K|Average|
|
49 |
+
|---|---|---|---|---|---|---|---|---|
|
50 |
+
| | |8-shot|8-shot|8-shot|8-shot|8-shot|8-shot||
|
51 |
+
| CyberAgentLM2-7B |7B| 0.2860 | 0.3496 | 0.5003 | 0.3510 | 0.8581 | 0.0705 | 0.4026 |
|
52 |
+
| Llama 2 |7B| 0.3580 | 0.6265 | 0.5860 | 0.3207 | 0.9049 | 0.1410 | 0.4895 |
|
53 |
+
| japanese-stablelm-base-beta-7b|7B| 0.3620 | 0.5903 | 0.5707 | 0.2992 | 0.8994 | 0.1198 | 0.4736 |
|
54 |
+
| japanese-stablelm-base-ja_vocab-beta-7b|7B| 0.3520 | 0.5549 | 0.5644 | 0.3079 | 0.8942 | 0.0538 | 0.4545 |
|
55 |
+
| ELYZA-japanese-Llama-2-7b|7B| 0.3400 | 0.5875 | 0.5595 | 0.2721 | 0.8989 | 0.1638 | 0.4703 |
|
56 |
+
| ELYZA-japanese-Llama-2-7b-fast|7B| 0.3280 | 0.5817 | 0.5530 | 0.2605 | 0.8989 | 0.1425 | 0.4608 |
|
57 |
+
| youri-7b (base) |7B| 0.3400 | 0.5257 | 0.5540 | 0.3297 | 0.8938 | 0.0963 | 0.4566 |
|
58 |
+
| Swallow-7b |7B| 0.3180 | 0.4836 | 0.5308 | 0.3125 | 0.8817 | 0.1130 | 0.4399 |
|
59 |
+
| Swallow-7b-plus |7B| 0.3280 | 0.4558 | 0.5259 | 0.3134 | 0.8929 | 0.1061 | 0.4370 |
|
60 |
+
| Qwen-7B |7B| 0.3640 | 0.5695 | 0.5787 | **0.3799** | 0.8933 | **0.4617** | 0.5412 |
|
61 |
+
| nekomata-7b |7B| 0.3340 | 0.4371 | 0.5340 | 0.2933 | 0.8766 | 0.1531 | 0.4380 |
|
62 |
+
| Mistral-7B-v0.1 |7B| **0.3660** | **0.7050** | **0.6264** | **0.3799** | **0.9157** | 0.3533 | **0.5577** |
|
63 |
+
| japanese-stablelm-base-gamma-7b|7B| 0.3240 | 0.5745 | 0.5739 | 0.3546 | 0.8976 | 0.1911 | 0.4860 |
|
64 |
+
| Swallow-MS-7b-v0.1 |7B| 0.3440 | 0.5976 | 0.5810 | 0.3364 | 0.9037 | 0.2623 | 0.5042 |
|
65 |
+
|
66 |
+
|
67 |
+
### Code version
|
68 |
+
|Model|Size|JHumanEval|HumanEval|
|
69 |
+
|---|---|---|---|
|
70 |
+
| | |pass@1|pass@1|
|
71 |
+
| CyberAgentLM2-7B |7B| ||
|
72 |
+
| Llama 2 |7B| ||
|
73 |
+
| japanese-stablelm-base-beta-7b|7B| ||
|
74 |
+
| japanese-stablelm-base-ja_vocab-beta-7b|7B| ||
|
75 |
+
| ELYZA-japanese-Llama-2-7b|7B| ||
|
76 |
+
| ELYZA-japanese-Llama-2-7b-fast|7B| ||
|
77 |
+
| youri-7b (base) |7B| ||
|
78 |
+
| Swallow-7b |7B| ||
|
79 |
+
| Swallow-7b-plus |7B| ||
|
80 |
+
| Qwen-7B |7B| ||
|
81 |
+
| nekomata-7b |7B| ||
|
82 |
+
| Mistral-7B-v0.1 |7B| ||
|
83 |
+
| japanese-stablelm-base-gamma-7b|7B| ||
|
84 |
+
| Swallow-MS-7b-v0.1 |7B| ||
|
85 |
+
|
86 |
+
## Usage
|
87 |
+
|
88 |
+
First install additional dependencies in [requirements.txt](./requirements.txt):
|
89 |
+
|
90 |
+
```sh
|
91 |
+
pip install -r requirements.txt
|
92 |
+
```
|
93 |
+
|
94 |
+
### Use the base model
|
95 |
+
|
96 |
+
```python
|
97 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
98 |
+
|
99 |
+
model_name = "tokyotech-llm/Swallow-MS-7b-v0.1"
|
100 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
101 |
+
|
102 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
103 |
+
prompt = "東京工業大学の主なキャンパスは、"
|
104 |
+
input_ids = tokenizer.encode(
|
105 |
+
prompt,
|
106 |
+
add_special_tokens=False,
|
107 |
+
return_tensors="pt"
|
108 |
+
)
|
109 |
+
tokens = model.generate(
|
110 |
+
input_ids.to(device=model.device),
|
111 |
+
max_new_tokens=128,
|
112 |
+
temperature=0.99,
|
113 |
+
top_p=0.95,
|
114 |
+
do_sample=True,
|
115 |
+
)
|
116 |
+
|
117 |
+
out = tokenizer.decode(tokens[0], skip_special_tokens=True)
|
118 |
+
print(out)
|
119 |
+
```
|
120 |
+
|
121 |
+
## Training Datasets
|
122 |
+
|
123 |
+
### Continual Pre-Training
|
124 |
+
The following datasets were used for continual pre-training.
|
125 |
+
|
126 |
+
- [Algebraic Stack](https://huggingface.co/datasets/EleutherAI/proof-pile-2)
|
127 |
+
- [Japanese Wikipedia](https://dumps.wikimedia.org/other/cirrussearch)
|
128 |
+
- [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)
|
129 |
+
- [Swallow Corpus](https://chokkan.org/temp/tokyotech-llm/swallow-corpus)
|
130 |
+
- [The Pile](https://huggingface.co/datasets/EleutherAI/pile)
|
131 |
+
|
132 |
+
## Risks and Limitations
|
133 |
+
|
134 |
+
The models released here are still in the early stages of our research and development and have not been tuned to ensure outputs align with human intent and safety considerations.
|
135 |
+
|
136 |
+
## Acknowledgements
|
137 |
+
|
138 |
+
We thank Mistral AI for releasing Mistral 7B v0.1 under an open license for others to build on.
|
139 |
+
|
140 |
+
Our project is supported by the [ABCI Large-scale Language Model Building Support Program](https://abci.ai/en/link/llm_support_program.html) of the National Institute of Advanced Industrial Science and Technology.
|
141 |
+
|
142 |
+
## License
|
143 |
+
|
144 |
+
apache-2.0
|
145 |
+
|
146 |
+
## Authors
|
147 |
+
|
148 |
+
Here are the team members:
|
149 |
+
- From [Okazaki Laboratory](https://www.nlp.c.titech.ac.jp/index.en.html), the following members:
|
150 |
+
- [Naoaki Okazaki](https://www.chokkan.org/index.ja.html)
|
151 |
+
- [Sakae Mizuki](https://s-mizuki-nlp.github.io/)
|
152 |
+
- [Hiroki Iida](https://meshidenn.github.io/)
|
153 |
+
- [Mengsay Loem](https://loem-ms.github.io/)
|
154 |
+
- [Shota Hirai](https://huggingface.co/Kotemo428)
|
155 |
+
- [Kakeru Hattori](https://aya-se.vercel.app/)
|
156 |
+
- [Masanari Ohi](https://twitter.com/stjohn2007)
|
157 |
+
- From [YOKOTA Laboratory](https://www.rio.gsic.titech.ac.jp/en/index.html), the following members:
|
158 |
+
- [Rio Yokota](https://twitter.com/rioyokota)
|
159 |
+
- [Kazuki Fujii](https://twitter.com/okoge_kaz)
|
160 |
+
- [Taishi Nakamura](https://twitter.com/Setuna7777_2)
|