tomaarsen HF staff commited on
Commit
93683ef
·
verified ·
1 Parent(s): 946d320

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 312,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,566 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - loss:MSELoss
10
+ base_model: nreimers/TinyBERT_L-4_H-312_v2
11
+ metrics:
12
+ - pearson_cosine
13
+ - spearman_cosine
14
+ - pearson_manhattan
15
+ - spearman_manhattan
16
+ - pearson_euclidean
17
+ - spearman_euclidean
18
+ - pearson_dot
19
+ - spearman_dot
20
+ - pearson_max
21
+ - spearman_max
22
+ - negative_mse
23
+ widget:
24
+ - source_sentence: A woman at home.
25
+ sentences:
26
+ - The woman is inside.
27
+ - The woman is performing for an audience.
28
+ - The two men are freinds
29
+ - source_sentence: boys play football
30
+ sentences:
31
+ - Rival college football players are playing a football game.
32
+ - A man looks at his watch at a bus stop.
33
+ - A woman walking on an old bridge near a mountain.
34
+ - source_sentence: Nobody has a pot
35
+ sentences:
36
+ - Nobody has a suit
37
+ - A woman riding a bicycle on the street.
38
+ - The front is decorated with Ethiopian themes and motifs.
39
+ - source_sentence: A dog plays ball.
40
+ sentences:
41
+ - A dog with a ball.
42
+ - A man looking into a microscope in a lab
43
+ - Children go past their parents.
44
+ - source_sentence: A person standing
45
+ sentences:
46
+ - There is a person standing outside
47
+ - A young man plays a racing video game.
48
+ - Two children playing on the floor with toy trains.
49
+ pipeline_tag: sentence-similarity
50
+ co2_eq_emissions:
51
+ emissions: 3.457859864142588
52
+ energy_consumed: 0.00889591477312334
53
+ source: codecarbon
54
+ training_type: fine-tuning
55
+ on_cloud: false
56
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
57
+ ram_total_size: 31.777088165283203
58
+ hours_used: 0.054
59
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
60
+ model-index:
61
+ - name: SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
62
+ results:
63
+ - task:
64
+ type: semantic-similarity
65
+ name: Semantic Similarity
66
+ dataset:
67
+ name: sts dev
68
+ type: sts-dev
69
+ metrics:
70
+ - type: pearson_cosine
71
+ value: 0.8077673131159315
72
+ name: Pearson Cosine
73
+ - type: spearman_cosine
74
+ value: 0.8208863013753134
75
+ name: Spearman Cosine
76
+ - type: pearson_manhattan
77
+ value: 0.8225516575982812
78
+ name: Pearson Manhattan
79
+ - type: spearman_manhattan
80
+ value: 0.8203236078973807
81
+ name: Spearman Manhattan
82
+ - type: pearson_euclidean
83
+ value: 0.8215663439432439
84
+ name: Pearson Euclidean
85
+ - type: spearman_euclidean
86
+ value: 0.8202318953605339
87
+ name: Spearman Euclidean
88
+ - type: pearson_dot
89
+ value: 0.7901487535994149
90
+ name: Pearson Dot
91
+ - type: spearman_dot
92
+ value: 0.7914362691291718
93
+ name: Spearman Dot
94
+ - type: pearson_max
95
+ value: 0.8225516575982812
96
+ name: Pearson Max
97
+ - type: spearman_max
98
+ value: 0.8208863013753134
99
+ name: Spearman Max
100
+ - task:
101
+ type: knowledge-distillation
102
+ name: Knowledge Distillation
103
+ dataset:
104
+ name: Unknown
105
+ type: unknown
106
+ metrics:
107
+ - type: negative_mse
108
+ value: -50.125449895858765
109
+ name: Negative Mse
110
+ - task:
111
+ type: semantic-similarity
112
+ name: Semantic Similarity
113
+ dataset:
114
+ name: sts test
115
+ type: sts-test
116
+ metrics:
117
+ - type: pearson_cosine
118
+ value: 0.7516961775809978
119
+ name: Pearson Cosine
120
+ - type: spearman_cosine
121
+ value: 0.7558402072520215
122
+ name: Spearman Cosine
123
+ - type: pearson_manhattan
124
+ value: 0.7762734499549059
125
+ name: Pearson Manhattan
126
+ - type: spearman_manhattan
127
+ value: 0.75965556867712
128
+ name: Spearman Manhattan
129
+ - type: pearson_euclidean
130
+ value: 0.7705568379382428
131
+ name: Pearson Euclidean
132
+ - type: spearman_euclidean
133
+ value: 0.7553604477247078
134
+ name: Spearman Euclidean
135
+ - type: pearson_dot
136
+ value: 0.7306801501272192
137
+ name: Pearson Dot
138
+ - type: spearman_dot
139
+ value: 0.7097993872384684
140
+ name: Spearman Dot
141
+ - type: pearson_max
142
+ value: 0.7762734499549059
143
+ name: Pearson Max
144
+ - type: spearman_max
145
+ value: 0.75965556867712
146
+ name: Spearman Max
147
+ ---
148
+
149
+ # SentenceTransformer based on nreimers/TinyBERT_L-4_H-312_v2
150
+
151
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) on the [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) dataset. It maps sentences & paragraphs to a 312-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
152
+
153
+ ## Model Details
154
+
155
+ ### Model Description
156
+ - **Model Type:** Sentence Transformer
157
+ - **Base model:** [nreimers/TinyBERT_L-4_H-312_v2](https://huggingface.co/nreimers/TinyBERT_L-4_H-312_v2) <!-- at revision d782507ee95c6565fe5924fcd6090999055e8db6 -->
158
+ - **Maximum Sequence Length:** 512 tokens
159
+ - **Output Dimensionality:** 312 tokens
160
+ - **Similarity Function:** Cosine Similarity
161
+ - **Training Dataset:**
162
+ - [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences)
163
+ - **Language:** en
164
+ <!-- - **License:** Unknown -->
165
+
166
+ ### Model Sources
167
+
168
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
169
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
170
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
171
+
172
+ ### Full Model Architecture
173
+
174
+ ```
175
+ SentenceTransformer(
176
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
177
+ (1): Pooling({'word_embedding_dimension': 312, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
178
+ )
179
+ ```
180
+
181
+ ## Usage
182
+
183
+ ### Direct Usage (Sentence Transformers)
184
+
185
+ First install the Sentence Transformers library:
186
+
187
+ ```bash
188
+ pip install -U sentence-transformers
189
+ ```
190
+
191
+ Then you can load this model and run inference.
192
+ ```python
193
+ from sentence_transformers import SentenceTransformer
194
+
195
+ # Download from the 🤗 Hub
196
+ model = SentenceTransformer("tomaarsen/TinyBERT_L-4_H-312_v2-distilled-from-stsb-roberta-base-v2")
197
+ # Run inference
198
+ sentences = [
199
+ 'A person standing',
200
+ 'There is a person standing outside',
201
+ 'A young man plays a racing video game.',
202
+ ]
203
+ embeddings = model.encode(sentences)
204
+ print(embeddings.shape)
205
+ # [3, 312]
206
+
207
+ # Get the similarity scores for the embeddings
208
+ similarities = model.similarity(embeddings)
209
+ print(similarities.shape)
210
+ # [3, 3]
211
+ ```
212
+
213
+ <!--
214
+ ### Direct Usage (Transformers)
215
+
216
+ <details><summary>Click to see the direct usage in Transformers</summary>
217
+
218
+ </details>
219
+ -->
220
+
221
+ <!--
222
+ ### Downstream Usage (Sentence Transformers)
223
+
224
+ You can finetune this model on your own dataset.
225
+
226
+ <details><summary>Click to expand</summary>
227
+
228
+ </details>
229
+ -->
230
+
231
+ <!--
232
+ ### Out-of-Scope Use
233
+
234
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
235
+ -->
236
+
237
+ ## Evaluation
238
+
239
+ ### Metrics
240
+
241
+ #### Semantic Similarity
242
+ * Dataset: `sts-dev`
243
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
244
+
245
+ | Metric | Value |
246
+ |:--------------------|:-----------|
247
+ | pearson_cosine | 0.8078 |
248
+ | **spearman_cosine** | **0.8209** |
249
+ | pearson_manhattan | 0.8226 |
250
+ | spearman_manhattan | 0.8203 |
251
+ | pearson_euclidean | 0.8216 |
252
+ | spearman_euclidean | 0.8202 |
253
+ | pearson_dot | 0.7901 |
254
+ | spearman_dot | 0.7914 |
255
+ | pearson_max | 0.8226 |
256
+ | spearman_max | 0.8209 |
257
+
258
+ #### Knowledge Distillation
259
+
260
+ * Evaluated with [<code>MSEEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.MSEEvaluator)
261
+
262
+ | Metric | Value |
263
+ |:-----------------|:-------------|
264
+ | **negative_mse** | **-50.1254** |
265
+
266
+ #### Semantic Similarity
267
+ * Dataset: `sts-test`
268
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
269
+
270
+ | Metric | Value |
271
+ |:--------------------|:-----------|
272
+ | pearson_cosine | 0.7517 |
273
+ | **spearman_cosine** | **0.7558** |
274
+ | pearson_manhattan | 0.7763 |
275
+ | spearman_manhattan | 0.7597 |
276
+ | pearson_euclidean | 0.7706 |
277
+ | spearman_euclidean | 0.7554 |
278
+ | pearson_dot | 0.7307 |
279
+ | spearman_dot | 0.7098 |
280
+ | pearson_max | 0.7763 |
281
+ | spearman_max | 0.7597 |
282
+
283
+ <!--
284
+ ## Bias, Risks and Limitations
285
+
286
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
287
+ -->
288
+
289
+ <!--
290
+ ### Recommendations
291
+
292
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
293
+ -->
294
+
295
+ ## Training Details
296
+
297
+ ### Training Dataset
298
+
299
+ #### sentence-transformers/wikipedia-en-sentences
300
+
301
+ * Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422)
302
+ * Size: 200,000 training samples
303
+ * Columns: <code>sentence</code> and <code>label</code>
304
+ * Approximate statistics based on the first 1000 samples:
305
+ | | sentence | label |
306
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
307
+ | type | string | list |
308
+ | details | <ul><li>min: 4 tokens</li><li>mean: 12.24 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> |
309
+ * Samples:
310
+ | sentence | label |
311
+ |:---------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------|
312
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>[-0.09614687412977219, 0.6815224885940552, 2.702199935913086, 1.8371250629425049, -1.2949433326721191, ...]</code> |
313
+ | <code>Children smiling and waving at camera</code> | <code>[2.769360303878784, 3.074428081512451, -7.291755676269531, 5.248741149902344, 2.85081148147583, ...]</code> |
314
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>[-3.0669667720794678, 2.9899890422821045, -1.253997802734375, 6.15218448638916, 0.5838223099708557, ...]</code> |
315
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
316
+
317
+ ### Evaluation Dataset
318
+
319
+ #### sentence-transformers/wikipedia-en-sentences
320
+
321
+ * Dataset: [sentence-transformers/wikipedia-en-sentences](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences) at [4a0972d](https://huggingface.co/datasets/sentence-transformers/wikipedia-en-sentences/tree/4a0972dcb781b5b5d27799798f032606421dd422)
322
+ * Size: 10,000 evaluation samples
323
+ * Columns: <code>sentence</code> and <code>label</code>
324
+ * Approximate statistics based on the first 1000 samples:
325
+ | | sentence | label |
326
+ |:--------|:----------------------------------------------------------------------------------|:-------------------------------------|
327
+ | type | string | list |
328
+ | details | <ul><li>min: 5 tokens</li><li>mean: 13.23 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>size: 312 elements</li></ul> |
329
+ * Samples:
330
+ | sentence | label |
331
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------|
332
+ | <code>Two women are embracing while holding to go packages.</code> | <code>[6.200135707855225, -2.0865142345428467, -2.1313390731811523, -1.9593913555145264, -1.081985592842102, ...]</code> |
333
+ | <code>Two young children in blue jerseys, one with the number 9 and one with the number 2 are standing on wooden steps in a bathroom and washing their hands in a sink.</code> | <code>[1.7725015878677368, 0.6873414516448975, -2.5191268920898438, 3.866339683532715, 2.853647470474243, ...]</code> |
334
+ | <code>A man selling donuts to a customer during a world exhibition event held in the city of Angeles</code> | <code>[-3.317653179168701, 3.0908589363098145, 0.1683920919895172, -2.4405274391174316, -3.1366524696350098, ...]</code> |
335
+ * Loss: [<code>MSELoss</code>](https://sbert.net/docs/package_reference/losses.html#mseloss)
336
+
337
+ ### Training Hyperparameters
338
+ #### Non-Default Hyperparameters
339
+
340
+ - `eval_strategy`: steps
341
+ - `per_device_train_batch_size`: 64
342
+ - `per_device_eval_batch_size`: 64
343
+ - `learning_rate`: 0.0001
344
+ - `num_train_epochs`: 1
345
+ - `warmup_ratio`: 0.1
346
+ - `fp16`: True
347
+ - `load_best_model_at_end`: True
348
+
349
+ #### All Hyperparameters
350
+ <details><summary>Click to expand</summary>
351
+
352
+ - `overwrite_output_dir`: False
353
+ - `do_predict`: False
354
+ - `eval_strategy`: steps
355
+ - `prediction_loss_only`: False
356
+ - `per_device_train_batch_size`: 64
357
+ - `per_device_eval_batch_size`: 64
358
+ - `per_gpu_train_batch_size`: None
359
+ - `per_gpu_eval_batch_size`: None
360
+ - `gradient_accumulation_steps`: 1
361
+ - `eval_accumulation_steps`: None
362
+ - `learning_rate`: 0.0001
363
+ - `weight_decay`: 0.0
364
+ - `adam_beta1`: 0.9
365
+ - `adam_beta2`: 0.999
366
+ - `adam_epsilon`: 1e-08
367
+ - `max_grad_norm`: 1.0
368
+ - `num_train_epochs`: 1
369
+ - `max_steps`: -1
370
+ - `lr_scheduler_type`: linear
371
+ - `lr_scheduler_kwargs`: {}
372
+ - `warmup_ratio`: 0.1
373
+ - `warmup_steps`: 0
374
+ - `log_level`: passive
375
+ - `log_level_replica`: warning
376
+ - `log_on_each_node`: True
377
+ - `logging_nan_inf_filter`: True
378
+ - `save_safetensors`: True
379
+ - `save_on_each_node`: False
380
+ - `save_only_model`: False
381
+ - `no_cuda`: False
382
+ - `use_cpu`: False
383
+ - `use_mps_device`: False
384
+ - `seed`: 42
385
+ - `data_seed`: None
386
+ - `jit_mode_eval`: False
387
+ - `use_ipex`: False
388
+ - `bf16`: False
389
+ - `fp16`: True
390
+ - `fp16_opt_level`: O1
391
+ - `half_precision_backend`: auto
392
+ - `bf16_full_eval`: False
393
+ - `fp16_full_eval`: False
394
+ - `tf32`: None
395
+ - `local_rank`: 0
396
+ - `ddp_backend`: None
397
+ - `tpu_num_cores`: None
398
+ - `tpu_metrics_debug`: False
399
+ - `debug`: []
400
+ - `dataloader_drop_last`: False
401
+ - `dataloader_num_workers`: 0
402
+ - `dataloader_prefetch_factor`: None
403
+ - `past_index`: -1
404
+ - `disable_tqdm`: False
405
+ - `remove_unused_columns`: True
406
+ - `label_names`: None
407
+ - `load_best_model_at_end`: True
408
+ - `ignore_data_skip`: False
409
+ - `fsdp`: []
410
+ - `fsdp_min_num_params`: 0
411
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
412
+ - `fsdp_transformer_layer_cls_to_wrap`: None
413
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
414
+ - `deepspeed`: None
415
+ - `label_smoothing_factor`: 0.0
416
+ - `optim`: adamw_torch
417
+ - `optim_args`: None
418
+ - `adafactor`: False
419
+ - `group_by_length`: False
420
+ - `length_column_name`: length
421
+ - `ddp_find_unused_parameters`: None
422
+ - `ddp_bucket_cap_mb`: None
423
+ - `ddp_broadcast_buffers`: None
424
+ - `dataloader_pin_memory`: True
425
+ - `dataloader_persistent_workers`: False
426
+ - `skip_memory_metrics`: True
427
+ - `use_legacy_prediction_loop`: False
428
+ - `push_to_hub`: False
429
+ - `resume_from_checkpoint`: None
430
+ - `hub_model_id`: None
431
+ - `hub_strategy`: every_save
432
+ - `hub_private_repo`: False
433
+ - `hub_always_push`: False
434
+ - `gradient_checkpointing`: False
435
+ - `gradient_checkpointing_kwargs`: None
436
+ - `include_inputs_for_metrics`: False
437
+ - `eval_do_concat_batches`: True
438
+ - `fp16_backend`: auto
439
+ - `push_to_hub_model_id`: None
440
+ - `push_to_hub_organization`: None
441
+ - `mp_parameters`:
442
+ - `auto_find_batch_size`: False
443
+ - `full_determinism`: False
444
+ - `torchdynamo`: None
445
+ - `ray_scope`: last
446
+ - `ddp_timeout`: 1800
447
+ - `torch_compile`: False
448
+ - `torch_compile_backend`: None
449
+ - `torch_compile_mode`: None
450
+ - `dispatch_batches`: None
451
+ - `split_batches`: None
452
+ - `include_tokens_per_second`: False
453
+ - `include_num_input_tokens_seen`: False
454
+ - `neftune_noise_alpha`: None
455
+ - `optim_target_modules`: None
456
+ - `batch_sampler`: batch_sampler
457
+ - `multi_dataset_batch_sampler`: proportional
458
+
459
+ </details>
460
+
461
+ ### Training Logs
462
+ | Epoch | Step | Training Loss | loss | negative_mse | sts-dev_spearman_cosine | sts-test_spearman_cosine |
463
+ |:--------:|:--------:|:-------------:|:----------:|:------------:|:-----------------------:|:------------------------:|
464
+ | 0.032 | 100 | 0.8847 | - | - | - | - |
465
+ | 0.064 | 200 | 0.8136 | - | - | - | - |
466
+ | 0.096 | 300 | 0.697 | - | - | - | - |
467
+ | 0.128 | 400 | 0.6128 | - | - | - | - |
468
+ | 0.16 | 500 | 0.5634 | 0.6324 | -63.2356 | 0.7564 | - |
469
+ | 0.192 | 600 | 0.5294 | - | - | - | - |
470
+ | 0.224 | 700 | 0.5035 | - | - | - | - |
471
+ | 0.256 | 800 | 0.4861 | - | - | - | - |
472
+ | 0.288 | 900 | 0.4668 | - | - | - | - |
473
+ | 0.32 | 1000 | 0.4515 | 0.5673 | -56.7263 | 0.7965 | - |
474
+ | 0.352 | 1100 | 0.4376 | - | - | - | - |
475
+ | 0.384 | 1200 | 0.4274 | - | - | - | - |
476
+ | 0.416 | 1300 | 0.4178 | - | - | - | - |
477
+ | 0.448 | 1400 | 0.4098 | - | - | - | - |
478
+ | 0.48 | 1500 | 0.4053 | 0.5354 | -53.5381 | 0.8091 | - |
479
+ | 0.512 | 1600 | 0.3934 | - | - | - | - |
480
+ | 0.544 | 1700 | 0.391 | - | - | - | - |
481
+ | 0.576 | 1800 | 0.3848 | - | - | - | - |
482
+ | 0.608 | 1900 | 0.3785 | - | - | - | - |
483
+ | 0.64 | 2000 | 0.3737 | 0.5168 | -51.6829 | 0.8159 | - |
484
+ | 0.672 | 2100 | 0.3716 | - | - | - | - |
485
+ | 0.704 | 2200 | 0.3695 | - | - | - | - |
486
+ | 0.736 | 2300 | 0.3666 | - | - | - | - |
487
+ | 0.768 | 2400 | 0.3616 | - | - | - | - |
488
+ | 0.8 | 2500 | 0.358 | 0.5067 | -50.6687 | 0.8189 | - |
489
+ | 0.832 | 2600 | 0.3551 | - | - | - | - |
490
+ | 0.864 | 2700 | 0.3544 | - | - | - | - |
491
+ | 0.896 | 2800 | 0.3524 | - | - | - | - |
492
+ | 0.928 | 2900 | 0.3524 | - | - | - | - |
493
+ | **0.96** | **3000** | **0.3529** | **0.5013** | **-50.1254** | **0.8209** | **-** |
494
+ | 0.992 | 3100 | 0.3496 | - | - | - | - |
495
+ | 1.0 | 3125 | - | - | - | - | 0.7558 |
496
+
497
+ * The bold row denotes the saved checkpoint.
498
+
499
+ ### Environmental Impact
500
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
501
+ - **Energy Consumed**: 0.009 kWh
502
+ - **Carbon Emitted**: 0.003 kg of CO2
503
+ - **Hours Used**: 0.054 hours
504
+
505
+ ### Training Hardware
506
+ - **On Cloud**: No
507
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
508
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
509
+ - **RAM Size**: 31.78 GB
510
+
511
+ ### Framework Versions
512
+ - Python: 3.11.6
513
+ - Sentence Transformers: 3.0.0.dev0
514
+ - Transformers: 4.41.0.dev0
515
+ - PyTorch: 2.3.0+cu121
516
+ - Accelerate: 0.26.1
517
+ - Datasets: 2.18.0
518
+ - Tokenizers: 0.19.1
519
+
520
+ ## Citation
521
+
522
+ ### BibTeX
523
+
524
+ #### Sentence Transformers
525
+ ```bibtex
526
+ @inproceedings{reimers-2019-sentence-bert,
527
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
528
+ author = "Reimers, Nils and Gurevych, Iryna",
529
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
530
+ month = "11",
531
+ year = "2019",
532
+ publisher = "Association for Computational Linguistics",
533
+ url = "https://arxiv.org/abs/1908.10084",
534
+ }
535
+ ```
536
+
537
+ #### MSELoss
538
+ ```bibtex
539
+ @inproceedings{reimers-2020-multilingual-sentence-bert,
540
+ title = "Making Monolingual Sentence Embeddings Multilingual using Knowledge Distillation",
541
+ author = "Reimers, Nils and Gurevych, Iryna",
542
+ booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing",
543
+ month = "11",
544
+ year = "2020",
545
+ publisher = "Association for Computational Linguistics",
546
+ url = "https://arxiv.org/abs/2004.09813",
547
+ }
548
+ ```
549
+
550
+ <!--
551
+ ## Glossary
552
+
553
+ *Clearly define terms in order to be accessible across audiences.*
554
+ -->
555
+
556
+ <!--
557
+ ## Model Card Authors
558
+
559
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
560
+ -->
561
+
562
+ <!--
563
+ ## Model Card Contact
564
+
565
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
566
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "nreimers/TinyBERT_L-4_H-312_v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 312,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1200,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 4,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.0.dev0",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0.dev0",
4
+ "transformers": "4.41.0.dev0",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8b248d9aa65fe8d5b5e059be6887704f837aeafe5e87eadd0cf350164c41ad8d
3
+ size 57408776
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff