tomaarsen HF staff commited on
Commit
0da87e5
·
verified ·
1 Parent(s): 04fec7f

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1041 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - loss:MatryoshkaLoss
10
+ - loss:MultipleNegativesRankingLoss
11
+ base_model: distilbert/distilroberta-base
12
+ metrics:
13
+ - pearson_cosine
14
+ - spearman_cosine
15
+ - pearson_manhattan
16
+ - spearman_manhattan
17
+ - pearson_euclidean
18
+ - spearman_euclidean
19
+ - pearson_dot
20
+ - spearman_dot
21
+ - pearson_max
22
+ - spearman_max
23
+ widget:
24
+ - source_sentence: The gate is yellow.
25
+ sentences:
26
+ - A yellow dog is playing in the snow.
27
+ - A turtle walks over the ground.
28
+ - Three men are on stage playing guitars.
29
+ - source_sentence: A woman is reading.
30
+ sentences:
31
+ - A woman is writing something.
32
+ - A tiger walks around aimlessly.
33
+ - Gunmen 'kill 10 tourists' in Kashmir
34
+ - source_sentence: A man jumping rope
35
+ sentences:
36
+ - A man is climbing a rope.
37
+ - Bombings kill 19 people in Iraq
38
+ - Kittens are eating from dishes.
39
+ - source_sentence: A baby is laughing.
40
+ sentences:
41
+ - A baby is crawling happily.
42
+ - Kittens are eating from dishes.
43
+ - SFG meeting reviews situation in Mali
44
+ - source_sentence: A man shoots a man.
45
+ sentences:
46
+ - A man is shooting off guns.
47
+ - A man is erasing a chalk board.
48
+ - A girl is riding a bicycle.
49
+ pipeline_tag: sentence-similarity
50
+ co2_eq_emissions:
51
+ emissions: 134.46101750442273
52
+ energy_consumed: 0.34592314293320514
53
+ source: codecarbon
54
+ training_type: fine-tuning
55
+ on_cloud: false
56
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
57
+ ram_total_size: 31.777088165283203
58
+ hours_used: 1.296
59
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
60
+ model-index:
61
+ - name: SentenceTransformer based on distilbert/distilroberta-base
62
+ results:
63
+ - task:
64
+ type: semantic-similarity
65
+ name: Semantic Similarity
66
+ dataset:
67
+ name: sts dev 768
68
+ type: sts-dev-768
69
+ metrics:
70
+ - type: pearson_cosine
71
+ value: 0.8481251400932781
72
+ name: Pearson Cosine
73
+ - type: spearman_cosine
74
+ value: 0.851870210632031
75
+ name: Spearman Cosine
76
+ - type: pearson_manhattan
77
+ value: 0.8393267568646925
78
+ name: Pearson Manhattan
79
+ - type: spearman_manhattan
80
+ value: 0.8384807951588668
81
+ name: Spearman Manhattan
82
+ - type: pearson_euclidean
83
+ value: 0.8409860761844343
84
+ name: Pearson Euclidean
85
+ - type: spearman_euclidean
86
+ value: 0.8402437232149903
87
+ name: Spearman Euclidean
88
+ - type: pearson_dot
89
+ value: 0.778375740024104
90
+ name: Pearson Dot
91
+ - type: spearman_dot
92
+ value: 0.7779671330832745
93
+ name: Spearman Dot
94
+ - type: pearson_max
95
+ value: 0.8481251400932781
96
+ name: Pearson Max
97
+ - type: spearman_max
98
+ value: 0.851870210632031
99
+ name: Spearman Max
100
+ - task:
101
+ type: semantic-similarity
102
+ name: Semantic Similarity
103
+ dataset:
104
+ name: sts dev 512
105
+ type: sts-dev-512
106
+ metrics:
107
+ - type: pearson_cosine
108
+ value: 0.8481027005283404
109
+ name: Pearson Cosine
110
+ - type: spearman_cosine
111
+ value: 0.8523762836460506
112
+ name: Spearman Cosine
113
+ - type: pearson_manhattan
114
+ value: 0.8386304289845581
115
+ name: Pearson Manhattan
116
+ - type: spearman_manhattan
117
+ value: 0.8377488866945335
118
+ name: Spearman Manhattan
119
+ - type: pearson_euclidean
120
+ value: 0.8402060724091132
121
+ name: Pearson Euclidean
122
+ - type: spearman_euclidean
123
+ value: 0.8394674780683281
124
+ name: Spearman Euclidean
125
+ - type: pearson_dot
126
+ value: 0.7711669414347555
127
+ name: Pearson Dot
128
+ - type: spearman_dot
129
+ value: 0.7713442697629354
130
+ name: Spearman Dot
131
+ - type: pearson_max
132
+ value: 0.8481027005283404
133
+ name: Pearson Max
134
+ - type: spearman_max
135
+ value: 0.8523762836460506
136
+ name: Spearman Max
137
+ - task:
138
+ type: semantic-similarity
139
+ name: Semantic Similarity
140
+ dataset:
141
+ name: sts dev 256
142
+ type: sts-dev-256
143
+ metrics:
144
+ - type: pearson_cosine
145
+ value: 0.842129976172463
146
+ name: Pearson Cosine
147
+ - type: spearman_cosine
148
+ value: 0.8488334736505414
149
+ name: Spearman Cosine
150
+ - type: pearson_manhattan
151
+ value: 0.8313278330554295
152
+ name: Pearson Manhattan
153
+ - type: spearman_manhattan
154
+ value: 0.8315716535622544
155
+ name: Spearman Manhattan
156
+ - type: pearson_euclidean
157
+ value: 0.8333448222091957
158
+ name: Pearson Euclidean
159
+ - type: spearman_euclidean
160
+ value: 0.8335338271135746
161
+ name: Spearman Euclidean
162
+ - type: pearson_dot
163
+ value: 0.7445817504026263
164
+ name: Pearson Dot
165
+ - type: spearman_dot
166
+ value: 0.7450058498333884
167
+ name: Spearman Dot
168
+ - type: pearson_max
169
+ value: 0.842129976172463
170
+ name: Pearson Max
171
+ - type: spearman_max
172
+ value: 0.8488334736505414
173
+ name: Spearman Max
174
+ - task:
175
+ type: semantic-similarity
176
+ name: Semantic Similarity
177
+ dataset:
178
+ name: sts dev 128
179
+ type: sts-dev-128
180
+ metrics:
181
+ - type: pearson_cosine
182
+ value: 0.8346971467711455
183
+ name: Pearson Cosine
184
+ - type: spearman_cosine
185
+ value: 0.8445473333837453
186
+ name: Spearman Cosine
187
+ - type: pearson_manhattan
188
+ value: 0.8240728025222037
189
+ name: Pearson Manhattan
190
+ - type: spearman_manhattan
191
+ value: 0.8248062249521573
192
+ name: Spearman Manhattan
193
+ - type: pearson_euclidean
194
+ value: 0.8254381823447683
195
+ name: Pearson Euclidean
196
+ - type: spearman_euclidean
197
+ value: 0.8261820268848477
198
+ name: Spearman Euclidean
199
+ - type: pearson_dot
200
+ value: 0.7083986436033697
201
+ name: Pearson Dot
202
+ - type: spearman_dot
203
+ value: 0.7093343189476312
204
+ name: Spearman Dot
205
+ - type: pearson_max
206
+ value: 0.8346971467711455
207
+ name: Pearson Max
208
+ - type: spearman_max
209
+ value: 0.8445473333837453
210
+ name: Spearman Max
211
+ - task:
212
+ type: semantic-similarity
213
+ name: Semantic Similarity
214
+ dataset:
215
+ name: sts dev 64
216
+ type: sts-dev-64
217
+ metrics:
218
+ - type: pearson_cosine
219
+ value: 0.8201235619233855
220
+ name: Pearson Cosine
221
+ - type: spearman_cosine
222
+ value: 0.8352180907883887
223
+ name: Spearman Cosine
224
+ - type: pearson_manhattan
225
+ value: 0.8032422421113089
226
+ name: Pearson Manhattan
227
+ - type: spearman_manhattan
228
+ value: 0.8047180797117756
229
+ name: Spearman Manhattan
230
+ - type: pearson_euclidean
231
+ value: 0.8059536263441476
232
+ name: Pearson Euclidean
233
+ - type: spearman_euclidean
234
+ value: 0.8072309964597537
235
+ name: Spearman Euclidean
236
+ - type: pearson_dot
237
+ value: 0.6360301824635421
238
+ name: Pearson Dot
239
+ - type: spearman_dot
240
+ value: 0.6388601952951507
241
+ name: Spearman Dot
242
+ - type: pearson_max
243
+ value: 0.8201235619233855
244
+ name: Pearson Max
245
+ - type: spearman_max
246
+ value: 0.8352180907883887
247
+ name: Spearman Max
248
+ - task:
249
+ type: semantic-similarity
250
+ name: Semantic Similarity
251
+ dataset:
252
+ name: sts test 768
253
+ type: sts-test-768
254
+ metrics:
255
+ - type: pearson_cosine
256
+ value: 0.8262197279185375
257
+ name: Pearson Cosine
258
+ - type: spearman_cosine
259
+ value: 0.8297611922199533
260
+ name: Spearman Cosine
261
+ - type: pearson_manhattan
262
+ value: 0.8103738584802076
263
+ name: Pearson Manhattan
264
+ - type: spearman_manhattan
265
+ value: 0.8032653500693283
266
+ name: Spearman Manhattan
267
+ - type: pearson_euclidean
268
+ value: 0.8113711464219397
269
+ name: Pearson Euclidean
270
+ - type: spearman_euclidean
271
+ value: 0.8047844488402207
272
+ name: Spearman Euclidean
273
+ - type: pearson_dot
274
+ value: 0.7351063083543349
275
+ name: Pearson Dot
276
+ - type: spearman_dot
277
+ value: 0.7222898603318773
278
+ name: Spearman Dot
279
+ - type: pearson_max
280
+ value: 0.8262197279185375
281
+ name: Pearson Max
282
+ - type: spearman_max
283
+ value: 0.8297611922199533
284
+ name: Spearman Max
285
+ - task:
286
+ type: semantic-similarity
287
+ name: Semantic Similarity
288
+ dataset:
289
+ name: sts test 512
290
+ type: sts-test-512
291
+ metrics:
292
+ - type: pearson_cosine
293
+ value: 0.8265289700873992
294
+ name: Pearson Cosine
295
+ - type: spearman_cosine
296
+ value: 0.8303420710627304
297
+ name: Spearman Cosine
298
+ - type: pearson_manhattan
299
+ value: 0.8092042518460232
300
+ name: Pearson Manhattan
301
+ - type: spearman_manhattan
302
+ value: 0.8021561300791633
303
+ name: Spearman Manhattan
304
+ - type: pearson_euclidean
305
+ value: 0.8099517575676378
306
+ name: Pearson Euclidean
307
+ - type: spearman_euclidean
308
+ value: 0.8034311442407586
309
+ name: Spearman Euclidean
310
+ - type: pearson_dot
311
+ value: 0.7239156858292818
312
+ name: Pearson Dot
313
+ - type: spearman_dot
314
+ value: 0.7141021600172974
315
+ name: Spearman Dot
316
+ - type: pearson_max
317
+ value: 0.8265289700873992
318
+ name: Pearson Max
319
+ - type: spearman_max
320
+ value: 0.8303420710627304
321
+ name: Spearman Max
322
+ - task:
323
+ type: semantic-similarity
324
+ name: Semantic Similarity
325
+ dataset:
326
+ name: sts test 256
327
+ type: sts-test-256
328
+ metrics:
329
+ - type: pearson_cosine
330
+ value: 0.8247713863827557
331
+ name: Pearson Cosine
332
+ - type: spearman_cosine
333
+ value: 0.8304669772286988
334
+ name: Spearman Cosine
335
+ - type: pearson_manhattan
336
+ value: 0.8012313573943666
337
+ name: Pearson Manhattan
338
+ - type: spearman_manhattan
339
+ value: 0.7951476656544464
340
+ name: Spearman Manhattan
341
+ - type: pearson_euclidean
342
+ value: 0.8028104839960224
343
+ name: Pearson Euclidean
344
+ - type: spearman_euclidean
345
+ value: 0.7974260171623634
346
+ name: Spearman Euclidean
347
+ - type: pearson_dot
348
+ value: 0.7011271518071694
349
+ name: Pearson Dot
350
+ - type: spearman_dot
351
+ value: 0.6946104528279369
352
+ name: Spearman Dot
353
+ - type: pearson_max
354
+ value: 0.8247713863827557
355
+ name: Pearson Max
356
+ - type: spearman_max
357
+ value: 0.8304669772286988
358
+ name: Spearman Max
359
+ - task:
360
+ type: semantic-similarity
361
+ name: Semantic Similarity
362
+ dataset:
363
+ name: sts test 128
364
+ type: sts-test-128
365
+ metrics:
366
+ - type: pearson_cosine
367
+ value: 0.8205553018873636
368
+ name: Pearson Cosine
369
+ - type: spearman_cosine
370
+ value: 0.8283987535951244
371
+ name: Spearman Cosine
372
+ - type: pearson_manhattan
373
+ value: 0.7931877193499666
374
+ name: Pearson Manhattan
375
+ - type: spearman_manhattan
376
+ value: 0.7878356187942884
377
+ name: Spearman Manhattan
378
+ - type: pearson_euclidean
379
+ value: 0.7946730313407452
380
+ name: Pearson Euclidean
381
+ - type: spearman_euclidean
382
+ value: 0.7891423743206649
383
+ name: Spearman Euclidean
384
+ - type: pearson_dot
385
+ value: 0.6617612604436709
386
+ name: Pearson Dot
387
+ - type: spearman_dot
388
+ value: 0.658567255717814
389
+ name: Spearman Dot
390
+ - type: pearson_max
391
+ value: 0.8205553018873636
392
+ name: Pearson Max
393
+ - type: spearman_max
394
+ value: 0.8283987535951244
395
+ name: Spearman Max
396
+ - task:
397
+ type: semantic-similarity
398
+ name: Semantic Similarity
399
+ dataset:
400
+ name: sts test 64
401
+ type: sts-test-64
402
+ metrics:
403
+ - type: pearson_cosine
404
+ value: 0.8118818737650724
405
+ name: Pearson Cosine
406
+ - type: spearman_cosine
407
+ value: 0.8241392189948019
408
+ name: Spearman Cosine
409
+ - type: pearson_manhattan
410
+ value: 0.7761319753952881
411
+ name: Pearson Manhattan
412
+ - type: spearman_manhattan
413
+ value: 0.7738169467058665
414
+ name: Spearman Manhattan
415
+ - type: pearson_euclidean
416
+ value: 0.7777045912119006
417
+ name: Pearson Euclidean
418
+ - type: spearman_euclidean
419
+ value: 0.7745630850628562
420
+ name: Spearman Euclidean
421
+ - type: pearson_dot
422
+ value: 0.5934162536230442
423
+ name: Pearson Dot
424
+ - type: spearman_dot
425
+ value: 0.5884207612393454
426
+ name: Spearman Dot
427
+ - type: pearson_max
428
+ value: 0.8118818737650724
429
+ name: Pearson Max
430
+ - type: spearman_max
431
+ value: 0.8241392189948019
432
+ name: Spearman Max
433
+ ---
434
+
435
+ # SentenceTransformer based on distilbert/distilroberta-base
436
+
437
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) on the [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
438
+
439
+ ## Model Details
440
+
441
+ ### Model Description
442
+ - **Model Type:** Sentence Transformer
443
+ - **Base model:** [distilbert/distilroberta-base](https://huggingface.co/distilbert/distilroberta-base) <!-- at revision fb53ab8802853c8e4fbdbcd0529f21fc6f459b2b -->
444
+ - **Maximum Sequence Length:** 512 tokens
445
+ - **Output Dimensionality:** 768 tokens
446
+ - **Similarity Function:** Cosine Similarity
447
+ - **Training Dataset:**
448
+ - [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli)
449
+ - **Language:** en
450
+ <!-- - **License:** Unknown -->
451
+
452
+ ### Model Sources
453
+
454
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
455
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
456
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
457
+
458
+ ### Full Model Architecture
459
+
460
+ ```
461
+ SentenceTransformer(
462
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel
463
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
464
+ )
465
+ ```
466
+
467
+ ## Usage
468
+
469
+ ### Direct Usage (Sentence Transformers)
470
+
471
+ First install the Sentence Transformers library:
472
+
473
+ ```bash
474
+ pip install -U sentence-transformers
475
+ ```
476
+
477
+ Then you can load this model and run inference.
478
+ ```python
479
+ from sentence_transformers import SentenceTransformer
480
+
481
+ # Download from the 🤗 Hub
482
+ model = SentenceTransformer("tomaarsen/distilroberta-base-nli-matryoshka-v3")
483
+ # Run inference
484
+ sentences = [
485
+ 'A man shoots a man.',
486
+ 'A man is shooting off guns.',
487
+ 'A man is erasing a chalk board.',
488
+ ]
489
+ embeddings = model.encode(sentences)
490
+ print(embeddings.shape)
491
+ # [3, 768]
492
+
493
+ # Get the similarity scores for the embeddings
494
+ similarities = model.similarity(embeddings)
495
+ print(similarities.shape)
496
+ # [3, 3]
497
+ ```
498
+
499
+ <!--
500
+ ### Direct Usage (Transformers)
501
+
502
+ <details><summary>Click to see the direct usage in Transformers</summary>
503
+
504
+ </details>
505
+ -->
506
+
507
+ <!--
508
+ ### Downstream Usage (Sentence Transformers)
509
+
510
+ You can finetune this model on your own dataset.
511
+
512
+ <details><summary>Click to expand</summary>
513
+
514
+ </details>
515
+ -->
516
+
517
+ <!--
518
+ ### Out-of-Scope Use
519
+
520
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
521
+ -->
522
+
523
+ ## Evaluation
524
+
525
+ ### Metrics
526
+
527
+ #### Semantic Similarity
528
+ * Dataset: `sts-dev-768`
529
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
530
+
531
+ | Metric | Value |
532
+ |:--------------------|:-----------|
533
+ | pearson_cosine | 0.8481 |
534
+ | **spearman_cosine** | **0.8519** |
535
+ | pearson_manhattan | 0.8393 |
536
+ | spearman_manhattan | 0.8385 |
537
+ | pearson_euclidean | 0.841 |
538
+ | spearman_euclidean | 0.8402 |
539
+ | pearson_dot | 0.7784 |
540
+ | spearman_dot | 0.778 |
541
+ | pearson_max | 0.8481 |
542
+ | spearman_max | 0.8519 |
543
+
544
+ #### Semantic Similarity
545
+ * Dataset: `sts-dev-512`
546
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
547
+
548
+ | Metric | Value |
549
+ |:--------------------|:-----------|
550
+ | pearson_cosine | 0.8481 |
551
+ | **spearman_cosine** | **0.8524** |
552
+ | pearson_manhattan | 0.8386 |
553
+ | spearman_manhattan | 0.8377 |
554
+ | pearson_euclidean | 0.8402 |
555
+ | spearman_euclidean | 0.8395 |
556
+ | pearson_dot | 0.7712 |
557
+ | spearman_dot | 0.7713 |
558
+ | pearson_max | 0.8481 |
559
+ | spearman_max | 0.8524 |
560
+
561
+ #### Semantic Similarity
562
+ * Dataset: `sts-dev-256`
563
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
564
+
565
+ | Metric | Value |
566
+ |:--------------------|:-----------|
567
+ | pearson_cosine | 0.8421 |
568
+ | **spearman_cosine** | **0.8488** |
569
+ | pearson_manhattan | 0.8313 |
570
+ | spearman_manhattan | 0.8316 |
571
+ | pearson_euclidean | 0.8333 |
572
+ | spearman_euclidean | 0.8335 |
573
+ | pearson_dot | 0.7446 |
574
+ | spearman_dot | 0.745 |
575
+ | pearson_max | 0.8421 |
576
+ | spearman_max | 0.8488 |
577
+
578
+ #### Semantic Similarity
579
+ * Dataset: `sts-dev-128`
580
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
581
+
582
+ | Metric | Value |
583
+ |:--------------------|:-----------|
584
+ | pearson_cosine | 0.8347 |
585
+ | **spearman_cosine** | **0.8445** |
586
+ | pearson_manhattan | 0.8241 |
587
+ | spearman_manhattan | 0.8248 |
588
+ | pearson_euclidean | 0.8254 |
589
+ | spearman_euclidean | 0.8262 |
590
+ | pearson_dot | 0.7084 |
591
+ | spearman_dot | 0.7093 |
592
+ | pearson_max | 0.8347 |
593
+ | spearman_max | 0.8445 |
594
+
595
+ #### Semantic Similarity
596
+ * Dataset: `sts-dev-64`
597
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
598
+
599
+ | Metric | Value |
600
+ |:--------------------|:-----------|
601
+ | pearson_cosine | 0.8201 |
602
+ | **spearman_cosine** | **0.8352** |
603
+ | pearson_manhattan | 0.8032 |
604
+ | spearman_manhattan | 0.8047 |
605
+ | pearson_euclidean | 0.806 |
606
+ | spearman_euclidean | 0.8072 |
607
+ | pearson_dot | 0.636 |
608
+ | spearman_dot | 0.6389 |
609
+ | pearson_max | 0.8201 |
610
+ | spearman_max | 0.8352 |
611
+
612
+ #### Semantic Similarity
613
+ * Dataset: `sts-test-768`
614
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
615
+
616
+ | Metric | Value |
617
+ |:--------------------|:-----------|
618
+ | pearson_cosine | 0.8262 |
619
+ | **spearman_cosine** | **0.8298** |
620
+ | pearson_manhattan | 0.8104 |
621
+ | spearman_manhattan | 0.8033 |
622
+ | pearson_euclidean | 0.8114 |
623
+ | spearman_euclidean | 0.8048 |
624
+ | pearson_dot | 0.7351 |
625
+ | spearman_dot | 0.7223 |
626
+ | pearson_max | 0.8262 |
627
+ | spearman_max | 0.8298 |
628
+
629
+ #### Semantic Similarity
630
+ * Dataset: `sts-test-512`
631
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
632
+
633
+ | Metric | Value |
634
+ |:--------------------|:-----------|
635
+ | pearson_cosine | 0.8265 |
636
+ | **spearman_cosine** | **0.8303** |
637
+ | pearson_manhattan | 0.8092 |
638
+ | spearman_manhattan | 0.8022 |
639
+ | pearson_euclidean | 0.81 |
640
+ | spearman_euclidean | 0.8034 |
641
+ | pearson_dot | 0.7239 |
642
+ | spearman_dot | 0.7141 |
643
+ | pearson_max | 0.8265 |
644
+ | spearman_max | 0.8303 |
645
+
646
+ #### Semantic Similarity
647
+ * Dataset: `sts-test-256`
648
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
649
+
650
+ | Metric | Value |
651
+ |:--------------------|:-----------|
652
+ | pearson_cosine | 0.8248 |
653
+ | **spearman_cosine** | **0.8305** |
654
+ | pearson_manhattan | 0.8012 |
655
+ | spearman_manhattan | 0.7951 |
656
+ | pearson_euclidean | 0.8028 |
657
+ | spearman_euclidean | 0.7974 |
658
+ | pearson_dot | 0.7011 |
659
+ | spearman_dot | 0.6946 |
660
+ | pearson_max | 0.8248 |
661
+ | spearman_max | 0.8305 |
662
+
663
+ #### Semantic Similarity
664
+ * Dataset: `sts-test-128`
665
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
666
+
667
+ | Metric | Value |
668
+ |:--------------------|:-----------|
669
+ | pearson_cosine | 0.8206 |
670
+ | **spearman_cosine** | **0.8284** |
671
+ | pearson_manhattan | 0.7932 |
672
+ | spearman_manhattan | 0.7878 |
673
+ | pearson_euclidean | 0.7947 |
674
+ | spearman_euclidean | 0.7891 |
675
+ | pearson_dot | 0.6618 |
676
+ | spearman_dot | 0.6586 |
677
+ | pearson_max | 0.8206 |
678
+ | spearman_max | 0.8284 |
679
+
680
+ #### Semantic Similarity
681
+ * Dataset: `sts-test-64`
682
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
683
+
684
+ | Metric | Value |
685
+ |:--------------------|:-----------|
686
+ | pearson_cosine | 0.8119 |
687
+ | **spearman_cosine** | **0.8241** |
688
+ | pearson_manhattan | 0.7761 |
689
+ | spearman_manhattan | 0.7738 |
690
+ | pearson_euclidean | 0.7777 |
691
+ | spearman_euclidean | 0.7746 |
692
+ | pearson_dot | 0.5934 |
693
+ | spearman_dot | 0.5884 |
694
+ | pearson_max | 0.8119 |
695
+ | spearman_max | 0.8241 |
696
+
697
+ <!--
698
+ ## Bias, Risks and Limitations
699
+
700
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
701
+ -->
702
+
703
+ <!--
704
+ ### Recommendations
705
+
706
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
707
+ -->
708
+
709
+ ## Training Details
710
+
711
+ ### Training Dataset
712
+
713
+ #### sentence-transformers/all-nli
714
+
715
+ * Dataset: [sentence-transformers/all-nli](https://huggingface.co/datasets/sentence-transformers/all-nli) at [65dd388](https://huggingface.co/datasets/sentence-transformers/all-nli/tree/65dd38867b600f42241d2066ba1a35fbd097fcfe)
716
+ * Size: 557,850 training samples
717
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
718
+ * Approximate statistics based on the first 1000 samples:
719
+ | | anchor | positive | negative |
720
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
721
+ | type | string | string | string |
722
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.38 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 12.8 tokens</li><li>max: 39 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.4 tokens</li><li>max: 50 tokens</li></ul> |
723
+ * Samples:
724
+ | anchor | positive | negative |
725
+ |:---------------------------------------------------------------------------|:-------------------------------------------------|:-----------------------------------------------------------|
726
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>A person is at a diner, ordering an omelette.</code> |
727
+ | <code>Children smiling and waving at camera</code> | <code>There are children present</code> | <code>The kids are frowning</code> |
728
+ | <code>A boy is jumping on skateboard in the middle of a red bridge.</code> | <code>The boy does a skateboarding trick.</code> | <code>The boy skates down the sidewalk.</code> |
729
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters:
730
+ ```json
731
+ {
732
+ "loss": "MultipleNegativesRankingLoss",
733
+ "matryoshka_dims": [
734
+ 768,
735
+ 512,
736
+ 256,
737
+ 128,
738
+ 64
739
+ ],
740
+ "matryoshka_weights": [
741
+ 1,
742
+ 1,
743
+ 1,
744
+ 1,
745
+ 1
746
+ ],
747
+ "n_dims_per_step": -1
748
+ }
749
+ ```
750
+
751
+ ### Evaluation Dataset
752
+
753
+ #### sentence-transformers/stsb
754
+
755
+ * Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
756
+ * Size: 1,500 evaluation samples
757
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
758
+ * Approximate statistics based on the first 1000 samples:
759
+ | | sentence1 | sentence2 | score |
760
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
761
+ | type | string | string | float |
762
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.0 tokens</li><li>max: 44 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 14.99 tokens</li><li>max: 61 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
763
+ * Samples:
764
+ | sentence1 | sentence2 | score |
765
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
766
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
767
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
768
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
769
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/losses.html#matryoshkaloss) with these parameters:
770
+ ```json
771
+ {
772
+ "loss": "MultipleNegativesRankingLoss",
773
+ "matryoshka_dims": [
774
+ 768,
775
+ 512,
776
+ 256,
777
+ 128,
778
+ 64
779
+ ],
780
+ "matryoshka_weights": [
781
+ 1,
782
+ 1,
783
+ 1,
784
+ 1,
785
+ 1
786
+ ],
787
+ "n_dims_per_step": -1
788
+ }
789
+ ```
790
+
791
+ ### Training Hyperparameters
792
+ #### Non-Default Hyperparameters
793
+
794
+ - `eval_strategy`: steps
795
+ - `per_device_train_batch_size`: 128
796
+ - `per_device_eval_batch_size`: 128
797
+ - `num_train_epochs`: 1
798
+ - `warmup_ratio`: 0.1
799
+ - `fp16`: True
800
+ - `batch_sampler`: no_duplicates
801
+
802
+ #### All Hyperparameters
803
+ <details><summary>Click to expand</summary>
804
+
805
+ - `overwrite_output_dir`: False
806
+ - `do_predict`: False
807
+ - `eval_strategy`: steps
808
+ - `prediction_loss_only`: False
809
+ - `per_device_train_batch_size`: 128
810
+ - `per_device_eval_batch_size`: 128
811
+ - `per_gpu_train_batch_size`: None
812
+ - `per_gpu_eval_batch_size`: None
813
+ - `gradient_accumulation_steps`: 1
814
+ - `eval_accumulation_steps`: None
815
+ - `learning_rate`: 5e-05
816
+ - `weight_decay`: 0.0
817
+ - `adam_beta1`: 0.9
818
+ - `adam_beta2`: 0.999
819
+ - `adam_epsilon`: 1e-08
820
+ - `max_grad_norm`: 1.0
821
+ - `num_train_epochs`: 1
822
+ - `max_steps`: -1
823
+ - `lr_scheduler_type`: linear
824
+ - `lr_scheduler_kwargs`: {}
825
+ - `warmup_ratio`: 0.1
826
+ - `warmup_steps`: 0
827
+ - `log_level`: passive
828
+ - `log_level_replica`: warning
829
+ - `log_on_each_node`: True
830
+ - `logging_nan_inf_filter`: True
831
+ - `save_safetensors`: True
832
+ - `save_on_each_node`: False
833
+ - `save_only_model`: False
834
+ - `no_cuda`: False
835
+ - `use_cpu`: False
836
+ - `use_mps_device`: False
837
+ - `seed`: 42
838
+ - `data_seed`: None
839
+ - `jit_mode_eval`: False
840
+ - `use_ipex`: False
841
+ - `bf16`: False
842
+ - `fp16`: True
843
+ - `fp16_opt_level`: O1
844
+ - `half_precision_backend`: auto
845
+ - `bf16_full_eval`: False
846
+ - `fp16_full_eval`: False
847
+ - `tf32`: None
848
+ - `local_rank`: 0
849
+ - `ddp_backend`: None
850
+ - `tpu_num_cores`: None
851
+ - `tpu_metrics_debug`: False
852
+ - `debug`: []
853
+ - `dataloader_drop_last`: False
854
+ - `dataloader_num_workers`: 0
855
+ - `dataloader_prefetch_factor`: None
856
+ - `past_index`: -1
857
+ - `disable_tqdm`: False
858
+ - `remove_unused_columns`: True
859
+ - `label_names`: None
860
+ - `load_best_model_at_end`: False
861
+ - `ignore_data_skip`: False
862
+ - `fsdp`: []
863
+ - `fsdp_min_num_params`: 0
864
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
865
+ - `fsdp_transformer_layer_cls_to_wrap`: None
866
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
867
+ - `deepspeed`: None
868
+ - `label_smoothing_factor`: 0.0
869
+ - `optim`: adamw_torch
870
+ - `optim_args`: None
871
+ - `adafactor`: False
872
+ - `group_by_length`: False
873
+ - `length_column_name`: length
874
+ - `ddp_find_unused_parameters`: None
875
+ - `ddp_bucket_cap_mb`: None
876
+ - `ddp_broadcast_buffers`: None
877
+ - `dataloader_pin_memory`: True
878
+ - `dataloader_persistent_workers`: False
879
+ - `skip_memory_metrics`: True
880
+ - `use_legacy_prediction_loop`: False
881
+ - `push_to_hub`: False
882
+ - `resume_from_checkpoint`: None
883
+ - `hub_model_id`: None
884
+ - `hub_strategy`: every_save
885
+ - `hub_private_repo`: False
886
+ - `hub_always_push`: False
887
+ - `gradient_checkpointing`: False
888
+ - `gradient_checkpointing_kwargs`: None
889
+ - `include_inputs_for_metrics`: False
890
+ - `eval_do_concat_batches`: True
891
+ - `fp16_backend`: auto
892
+ - `push_to_hub_model_id`: None
893
+ - `push_to_hub_organization`: None
894
+ - `mp_parameters`:
895
+ - `auto_find_batch_size`: False
896
+ - `full_determinism`: False
897
+ - `torchdynamo`: None
898
+ - `ray_scope`: last
899
+ - `ddp_timeout`: 1800
900
+ - `torch_compile`: False
901
+ - `torch_compile_backend`: None
902
+ - `torch_compile_mode`: None
903
+ - `dispatch_batches`: None
904
+ - `split_batches`: None
905
+ - `include_tokens_per_second`: False
906
+ - `include_num_input_tokens_seen`: False
907
+ - `neftune_noise_alpha`: None
908
+ - `optim_target_modules`: None
909
+ - `batch_sampler`: no_duplicates
910
+ - `multi_dataset_batch_sampler`: proportional
911
+
912
+ </details>
913
+
914
+ ### Training Logs
915
+ | Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
916
+ |:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
917
+ | 0.0229 | 100 | 19.9245 | 11.3900 | 0.7772 | 0.7998 | 0.8049 | 0.7902 | 0.7919 | - | - | - | - | - |
918
+ | 0.0459 | 200 | 10.6055 | 11.1510 | 0.7809 | 0.7996 | 0.8055 | 0.7954 | 0.7954 | - | - | - | - | - |
919
+ | 0.0688 | 300 | 9.6389 | 11.1229 | 0.7836 | 0.8029 | 0.8114 | 0.7923 | 0.8083 | - | - | - | - | - |
920
+ | 0.0918 | 400 | 8.6917 | 11.0299 | 0.7976 | 0.8117 | 0.8142 | 0.8002 | 0.8087 | - | - | - | - | - |
921
+ | 0.1147 | 500 | 8.3064 | 11.3586 | 0.7895 | 0.8058 | 0.8120 | 0.7978 | 0.8065 | - | - | - | - | - |
922
+ | 0.1376 | 600 | 7.8026 | 11.5047 | 0.7876 | 0.8015 | 0.8065 | 0.7934 | 0.8016 | - | - | - | - | - |
923
+ | 0.1606 | 700 | 7.9978 | 11.5823 | 0.7944 | 0.8067 | 0.8072 | 0.7994 | 0.8045 | - | - | - | - | - |
924
+ | 0.1835 | 800 | 6.9249 | 11.5862 | 0.7945 | 0.8054 | 0.8085 | 0.8012 | 0.8033 | - | - | - | - | - |
925
+ | 0.2065 | 900 | 7.1059 | 11.2365 | 0.7895 | 0.8035 | 0.8072 | 0.7956 | 0.8031 | - | - | - | - | - |
926
+ | 0.2294 | 1000 | 6.5483 | 11.3770 | 0.7853 | 0.7994 | 0.8039 | 0.7894 | 0.8024 | - | - | - | - | - |
927
+ | 0.2524 | 1100 | 6.6684 | 11.5038 | 0.7968 | 0.8087 | 0.8115 | 0.8002 | 0.8065 | - | - | - | - | - |
928
+ | 0.2753 | 1200 | 6.4661 | 11.4057 | 0.7980 | 0.8082 | 0.8103 | 0.8057 | 0.8070 | - | - | - | - | - |
929
+ | 0.2982 | 1300 | 6.501 | 11.2521 | 0.7974 | 0.8100 | 0.8111 | 0.8025 | 0.8079 | - | - | - | - | - |
930
+ | 0.3212 | 1400 | 6.0769 | 11.1458 | 0.7971 | 0.8103 | 0.8124 | 0.7982 | 0.8082 | - | - | - | - | - |
931
+ | 0.3441 | 1500 | 6.1919 | 11.3180 | 0.8039 | 0.8129 | 0.8144 | 0.8094 | 0.8098 | - | - | - | - | - |
932
+ | 0.3671 | 1600 | 5.8213 | 11.6196 | 0.7924 | 0.8072 | 0.8090 | 0.8003 | 0.8012 | - | - | - | - | - |
933
+ | 0.3900 | 1700 | 5.534 | 11.0700 | 0.7979 | 0.8104 | 0.8132 | 0.8028 | 0.8101 | - | - | - | - | - |
934
+ | 0.4129 | 1800 | 5.7536 | 11.0916 | 0.7934 | 0.8087 | 0.8149 | 0.8008 | 0.8085 | - | - | - | - | - |
935
+ | 0.4359 | 1900 | 5.3778 | 11.2658 | 0.7942 | 0.8084 | 0.8104 | 0.7980 | 0.8049 | - | - | - | - | - |
936
+ | 0.4588 | 2000 | 5.4925 | 11.4851 | 0.7932 | 0.8062 | 0.8086 | 0.7932 | 0.8057 | - | - | - | - | - |
937
+ | 0.4818 | 2100 | 5.3125 | 11.4833 | 0.7987 | 0.8119 | 0.8154 | 0.8012 | 0.8124 | - | - | - | - | - |
938
+ | 0.5047 | 2200 | 5.1914 | 11.2848 | 0.7784 | 0.7971 | 0.8037 | 0.7911 | 0.8004 | - | - | - | - | - |
939
+ | 0.5276 | 2300 | 5.2921 | 11.5364 | 0.7698 | 0.7910 | 0.7974 | 0.7839 | 0.7900 | - | - | - | - | - |
940
+ | 0.5506 | 2400 | 5.288 | 11.3944 | 0.7873 | 0.8011 | 0.8051 | 0.7877 | 0.8003 | - | - | - | - | - |
941
+ | 0.5735 | 2500 | 5.3697 | 11.4532 | 0.7949 | 0.8077 | 0.8111 | 0.7955 | 0.8069 | - | - | - | - | - |
942
+ | 0.5965 | 2600 | 5.1521 | 11.2788 | 0.7973 | 0.8095 | 0.8130 | 0.7940 | 0.8088 | - | - | - | - | - |
943
+ | 0.6194 | 2700 | 5.2316 | 11.2472 | 0.7948 | 0.8077 | 0.8102 | 0.7939 | 0.8053 | - | - | - | - | - |
944
+ | 0.6423 | 2800 | 5.2599 | 11.4171 | 0.7882 | 0.8029 | 0.8065 | 0.7888 | 0.8019 | - | - | - | - | - |
945
+ | 0.6653 | 2900 | 5.4052 | 11.4026 | 0.7871 | 0.8005 | 0.8021 | 0.7833 | 0.7985 | - | - | - | - | - |
946
+ | 0.6882 | 3000 | 5.3474 | 11.2084 | 0.7895 | 0.8047 | 0.8079 | 0.7928 | 0.8050 | - | - | - | - | - |
947
+ | 0.7112 | 3100 | 5.0336 | 11.3999 | 0.8023 | 0.8150 | 0.8182 | 0.8024 | 0.8168 | - | - | - | - | - |
948
+ | 0.7341 | 3200 | 5.2496 | 11.2307 | 0.8015 | 0.8137 | 0.8167 | 0.8000 | 0.8140 | - | - | - | - | - |
949
+ | 0.7571 | 3300 | 3.8712 | 10.9468 | 0.8396 | 0.8440 | 0.8471 | 0.8284 | 0.8479 | - | - | - | - | - |
950
+ | 0.7800 | 3400 | 2.7068 | 10.9292 | 0.8414 | 0.8453 | 0.8489 | 0.8305 | 0.8497 | - | - | - | - | - |
951
+ | 0.8029 | 3500 | 2.3418 | 10.8626 | 0.8427 | 0.8467 | 0.8504 | 0.8322 | 0.8504 | - | - | - | - | - |
952
+ | 0.8259 | 3600 | 2.2419 | 10.9065 | 0.8421 | 0.8467 | 0.8504 | 0.8320 | 0.8502 | - | - | - | - | - |
953
+ | 0.8488 | 3700 | 2.125 | 10.9517 | 0.8424 | 0.8472 | 0.8509 | 0.8324 | 0.8510 | - | - | - | - | - |
954
+ | 0.8718 | 3800 | 1.9942 | 11.0142 | 0.8438 | 0.8482 | 0.8519 | 0.8337 | 0.8517 | - | - | - | - | - |
955
+ | 0.8947 | 3900 | 2.031 | 10.9662 | 0.8433 | 0.8480 | 0.8519 | 0.8340 | 0.8515 | - | - | - | - | - |
956
+ | 0.9176 | 4000 | 1.9734 | 11.0054 | 0.8452 | 0.8495 | 0.8531 | 0.8354 | 0.8528 | - | - | - | - | - |
957
+ | 0.9406 | 4100 | 1.9468 | 11.0183 | 0.8447 | 0.8490 | 0.8526 | 0.8348 | 0.8522 | - | - | - | - | - |
958
+ | 0.9635 | 4200 | 1.9008 | 11.0154 | 0.8445 | 0.8485 | 0.8521 | 0.8352 | 0.8517 | - | - | - | - | - |
959
+ | 0.9865 | 4300 | 1.8511 | 10.9966 | 0.8445 | 0.8488 | 0.8524 | 0.8352 | 0.8519 | - | - | - | - | - |
960
+ | 1.0 | 4359 | - | - | - | - | - | - | - | 0.8284 | 0.8305 | 0.8303 | 0.8241 | 0.8298 |
961
+
962
+
963
+ ### Environmental Impact
964
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
965
+ - **Energy Consumed**: 0.346 kWh
966
+ - **Carbon Emitted**: 0.134 kg of CO2
967
+ - **Hours Used**: 1.296 hours
968
+
969
+ ### Training Hardware
970
+ - **On Cloud**: No
971
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
972
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
973
+ - **RAM Size**: 31.78 GB
974
+
975
+ ### Framework Versions
976
+ - Python: 3.11.6
977
+ - Sentence Transformers: 3.0.0.dev0
978
+ - Transformers: 4.41.0.dev0
979
+ - PyTorch: 2.3.0+cu121
980
+ - Accelerate: 0.26.1
981
+ - Datasets: 2.18.0
982
+ - Tokenizers: 0.19.1
983
+
984
+ ## Citation
985
+
986
+ ### BibTeX
987
+
988
+ #### Sentence Transformers
989
+ ```bibtex
990
+ @inproceedings{reimers-2019-sentence-bert,
991
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
992
+ author = "Reimers, Nils and Gurevych, Iryna",
993
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
994
+ month = "11",
995
+ year = "2019",
996
+ publisher = "Association for Computational Linguistics",
997
+ url = "https://arxiv.org/abs/1908.10084",
998
+ }
999
+ ```
1000
+
1001
+ #### MatryoshkaLoss
1002
+ ```bibtex
1003
+ @misc{kusupati2024matryoshka,
1004
+ title={Matryoshka Representation Learning},
1005
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
1006
+ year={2024},
1007
+ eprint={2205.13147},
1008
+ archivePrefix={arXiv},
1009
+ primaryClass={cs.LG}
1010
+ }
1011
+ ```
1012
+
1013
+ #### MultipleNegativesRankingLoss
1014
+ ```bibtex
1015
+ @misc{henderson2017efficient,
1016
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
1017
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1018
+ year={2017},
1019
+ eprint={1705.00652},
1020
+ archivePrefix={arXiv},
1021
+ primaryClass={cs.CL}
1022
+ }
1023
+ ```
1024
+
1025
+ <!--
1026
+ ## Glossary
1027
+
1028
+ *Clearly define terms in order to be accessible across audiences.*
1029
+ -->
1030
+
1031
+ <!--
1032
+ ## Model Card Authors
1033
+
1034
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1035
+ -->
1036
+
1037
+ <!--
1038
+ ## Model Card Contact
1039
+
1040
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1041
+ -->
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "distilroberta-base",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "hidden_act": "gelu",
11
+ "hidden_dropout_prob": 0.1,
12
+ "hidden_size": 768,
13
+ "initializer_range": 0.02,
14
+ "intermediate_size": 3072,
15
+ "layer_norm_eps": 1e-05,
16
+ "max_position_embeddings": 514,
17
+ "model_type": "roberta",
18
+ "num_attention_heads": 12,
19
+ "num_hidden_layers": 6,
20
+ "pad_token_id": 1,
21
+ "position_embedding_type": "absolute",
22
+ "torch_dtype": "float32",
23
+ "transformers_version": "4.41.0.dev0",
24
+ "type_vocab_size": 1,
25
+ "use_cache": true,
26
+ "vocab_size": 50265
27
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.0.dev0",
4
+ "transformers": "4.41.0.dev0",
5
+ "pytorch": "2.3.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c54cbaedca4f2b309e67764d18b2d94788b99190629a52ebd6acabd124b7f6c
3
+ size 328485128
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": "<s>",
3
+ "cls_token": "<s>",
4
+ "eos_token": "</s>",
5
+ "mask_token": {
6
+ "content": "<mask>",
7
+ "lstrip": true,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "pad_token": "<pad>",
13
+ "sep_token": "</s>",
14
+ "unk_token": "<unk>"
15
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": true,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": true,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": true,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": true,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "mask_token": "<mask>",
51
+ "model_max_length": 512,
52
+ "pad_token": "<pad>",
53
+ "sep_token": "</s>",
54
+ "tokenizer_class": "RobertaTokenizer",
55
+ "trim_offsets": true,
56
+ "unk_token": "<unk>"
57
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff