tomaarsen HF staff commited on
Commit
15762c0
·
1 Parent(s): 2c2fb0c

Add SetFit ABSA model

Browse files
Files changed (5) hide show
  1. README.md +47 -34
  2. config.json +1 -1
  3. config_setfit.json +1 -0
  4. model_head.pkl +1 -1
  5. pytorch_model.bin +1 -1
README.md CHANGED
@@ -13,24 +13,26 @@ datasets:
13
  metrics:
14
  - accuracy
15
  widget:
16
- - text: people:Regardless of whether there are two people or two hundred people ahead
17
- of you the hostess will take your name and tell you Five minutes.
18
- - text: dish:This dish is my favorite and I always get it when I go there and never
19
- get tired of it.
20
- - text: food:Get your food to go, find a bench, and kick back with a plate of dumplings.
21
- - text: crabmeat lasagna:You must have the crabmeat lasagna which is out of this world
22
- and the chocolate bread pudding for dessert.
23
- - text: plate:Get your food to go, find a bench, and kick back with a plate of dumplings.
 
 
24
  pipeline_tag: text-classification
25
  inference: false
26
  co2_eq_emissions:
27
- emissions: 12.371061343498498
28
  source: codecarbon
29
  training_type: fine-tuning
30
  on_cloud: false
31
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
32
  ram_total_size: 31.777088165283203
33
- hours_used: 0.206
34
  hardware_used: 1 x NVIDIA GeForce RTX 3090
35
  base_model: BAAI/bge-small-en-v1.5
36
  model-index:
@@ -45,7 +47,7 @@ model-index:
45
  split: test
46
  metrics:
47
  - type: accuracy
48
- value: 0.7871243108660857
49
  name: Accuracy
50
  ---
51
 
@@ -70,6 +72,7 @@ This model was trained within the context of a larger system for ABSA, which loo
70
  - **Model Type:** SetFit
71
  - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
72
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
 
73
  - **SetFitABSA Aspect Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect)
74
  - **SetFitABSA Polarity Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity)
75
  - **Maximum Sequence Length:** 512 tokens
@@ -95,7 +98,7 @@ This model was trained within the context of a larger system for ABSA, which loo
95
  ### Metrics
96
  | Label | Accuracy |
97
  |:--------|:---------|
98
- | **all** | 0.7871 |
99
 
100
  ## Uses
101
 
@@ -150,12 +153,12 @@ preds = model("The food was great, but the venue is just way too busy.")
150
  ### Training Set Metrics
151
  | Training set | Min | Median | Max |
152
  |:-------------|:----|:--------|:----|
153
- | Word count | 4 | 19.3034 | 45 |
154
 
155
  | Label | Training Sample Count |
156
  |:----------|:----------------------|
157
- | no aspect | 231 |
158
- | aspect | 204 |
159
 
160
  ### Training Hyperparameters
161
  - batch_size: (256, 256)
@@ -171,34 +174,43 @@ preds = model("The food was great, but the venue is just way too busy.")
171
  - use_amp: True
172
  - warmup_proportion: 0.1
173
  - seed: 42
 
174
  - load_best_model_at_end: True
175
 
176
  ### Training Results
177
  | Epoch | Step | Training Loss | Validation Loss |
178
  |:----------:|:-------:|:-------------:|:---------------:|
179
- | 0.0027 | 1 | 0.2574 | - |
180
- | 0.1340 | 50 | 0.2561 | - |
181
- | 0.2681 | 100 | 0.251 | 0.2543 |
182
- | 0.4021 | 150 | 0.2451 | - |
183
- | 0.5362 | 200 | 0.242 | 0.2506 |
184
- | 0.6702 | 250 | 0.2239 | - |
185
- | **0.8043** | **300** | **0.0473** | **0.2499** |
186
- | 0.9383 | 350 | 0.0098 | - |
187
- | 1.0724 | 400 | 0.0097 | 0.2734 |
188
- | 1.2064 | 450 | 0.0047 | - |
189
- | 1.3405 | 500 | 0.0071 | 0.2834 |
190
- | 1.4745 | 550 | 0.0089 | - |
191
- | 1.6086 | 600 | 0.005 | 0.273 |
192
- | 1.7426 | 650 | 0.0041 | - |
193
- | 1.8767 | 700 | 0.0042 | 0.2942 |
194
- | 2.0107 | 750 | 0.0053 | - |
195
- | 2.1448 | 800 | 0.0073 | 0.2898 |
 
 
 
 
 
 
 
 
196
 
197
  * The bold row denotes the saved checkpoint.
198
  ### Environmental Impact
199
  Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
200
- - **Carbon Emitted**: 0.012 kg of CO2
201
- - **Hours Used**: 0.206 hours
202
 
203
  ### Training Hardware
204
  - **On Cloud**: No
@@ -210,6 +222,7 @@ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codec
210
  - Python: 3.9.16
211
  - SetFit: 1.0.0.dev0
212
  - Sentence Transformers: 2.2.2
 
213
  - Transformers: 4.29.0
214
  - PyTorch: 1.13.1+cu117
215
  - Datasets: 2.15.0
 
13
  metrics:
14
  - accuracy
15
  widget:
16
+ - text: bottles of wine:bottles of wine are cheap and good.
17
+ - text: world:I also ordered the Change Mojito, which was out of this world.
18
+ - text: bar:We were still sitting at the bar while we drank the sangria, but facing
19
+ away from the bar when we turned back around, the $2 was gone the people next
20
+ to us said the bartender took it.
21
+ - text: word:word of advice, save room for pasta dishes and never leave until you've
22
+ had the tiramisu.
23
+ - text: bartender:We were still sitting at the bar while we drank the sangria, but
24
+ facing away from the bar when we turned back around, the $2 was gone the people
25
+ next to us said the bartender took it.
26
  pipeline_tag: text-classification
27
  inference: false
28
  co2_eq_emissions:
29
+ emissions: 18.322516829847984
30
  source: codecarbon
31
  training_type: fine-tuning
32
  on_cloud: false
33
  cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
34
  ram_total_size: 31.777088165283203
35
+ hours_used: 0.303
36
  hardware_used: 1 x NVIDIA GeForce RTX 3090
37
  base_model: BAAI/bge-small-en-v1.5
38
  model-index:
 
47
  split: test
48
  metrics:
49
  - type: accuracy
50
+ value: 0.8623188405797102
51
  name: Accuracy
52
  ---
53
 
 
72
  - **Model Type:** SetFit
73
  - **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
74
  - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
75
+ - **spaCy Model:** en_core_web_lg
76
  - **SetFitABSA Aspect Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect)
77
  - **SetFitABSA Polarity Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity)
78
  - **Maximum Sequence Length:** 512 tokens
 
98
  ### Metrics
99
  | Label | Accuracy |
100
  |:--------|:---------|
101
+ | **all** | 0.8623 |
102
 
103
  ## Uses
104
 
 
153
  ### Training Set Metrics
154
  | Training set | Min | Median | Max |
155
  |:-------------|:----|:--------|:----|
156
+ | Word count | 4 | 19.3576 | 45 |
157
 
158
  | Label | Training Sample Count |
159
  |:----------|:----------------------|
160
+ | no aspect | 170 |
161
+ | aspect | 255 |
162
 
163
  ### Training Hyperparameters
164
  - batch_size: (256, 256)
 
174
  - use_amp: True
175
  - warmup_proportion: 0.1
176
  - seed: 42
177
+ - eval_max_steps: -1
178
  - load_best_model_at_end: True
179
 
180
  ### Training Results
181
  | Epoch | Step | Training Loss | Validation Loss |
182
  |:----------:|:-------:|:-------------:|:---------------:|
183
+ | 0.0027 | 1 | 0.2498 | - |
184
+ | 0.1355 | 50 | 0.2442 | - |
185
+ | 0.2710 | 100 | 0.2462 | 0.2496 |
186
+ | 0.4065 | 150 | 0.2282 | - |
187
+ | 0.5420 | 200 | 0.0752 | 0.1686 |
188
+ | 0.6775 | 250 | 0.0124 | - |
189
+ | 0.8130 | 300 | 0.0128 | 0.1884 |
190
+ | 0.9485 | 350 | 0.0062 | - |
191
+ | 1.0840 | 400 | 0.0012 | 0.183 |
192
+ | 1.2195 | 450 | 0.0009 | - |
193
+ | 1.3550 | 500 | 0.0008 | 0.2072 |
194
+ | 1.4905 | 550 | 0.0031 | - |
195
+ | 1.6260 | 600 | 0.0006 | 0.1716 |
196
+ | 1.7615 | 650 | 0.0005 | - |
197
+ | **1.8970** | **700** | **0.0005** | **0.1666** |
198
+ | 2.0325 | 750 | 0.0005 | - |
199
+ | 2.1680 | 800 | 0.0004 | 0.2086 |
200
+ | 2.3035 | 850 | 0.0005 | - |
201
+ | 2.4390 | 900 | 0.0004 | 0.183 |
202
+ | 2.5745 | 950 | 0.0004 | - |
203
+ | 2.7100 | 1000 | 0.0036 | 0.1725 |
204
+ | 2.8455 | 1050 | 0.0004 | - |
205
+ | 2.9810 | 1100 | 0.0003 | 0.1816 |
206
+ | 3.1165 | 1150 | 0.0004 | - |
207
+ | 3.2520 | 1200 | 0.0003 | 0.1802 |
208
 
209
  * The bold row denotes the saved checkpoint.
210
  ### Environmental Impact
211
  Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
212
+ - **Carbon Emitted**: 0.018 kg of CO2
213
+ - **Hours Used**: 0.303 hours
214
 
215
  ### Training Hardware
216
  - **On Cloud**: No
 
222
  - Python: 3.9.16
223
  - SetFit: 1.0.0.dev0
224
  - Sentence Transformers: 2.2.2
225
+ - spaCy: 3.7.2
226
  - Transformers: 4.29.0
227
  - PyTorch: 1.13.1+cu117
228
  - Datasets: 2.15.0
config.json CHANGED
@@ -1,5 +1,5 @@
1
  {
2
- "_name_or_path": "models\\step_300\\",
3
  "architectures": [
4
  "BertModel"
5
  ],
 
1
  {
2
+ "_name_or_path": "models\\step_700\\",
3
  "architectures": [
4
  "BertModel"
5
  ],
config_setfit.json CHANGED
@@ -1,4 +1,5 @@
1
  {
 
2
  "normalize_embeddings": false,
3
  "labels": [
4
  "no aspect",
 
1
  {
2
+ "spacy_model": "en_core_web_lg",
3
  "normalize_embeddings": false,
4
  "labels": [
5
  "no aspect",
model_head.pkl CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:40981c12f3dc9655afbabd43a518ca9aaeb02bca44eb5812e3d98e8f04b90761
3
  size 3919
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:410891858f59f504ec87489b123ebaef75277ab06357a08cdab676c7f0e0a4c4
3
  size 3919
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:053fcaf18552044f9fab2b6c2eccfceff2b5c353804ac31e4688befd443f7be5
3
  size 133511213
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1822a3ac45126bf5d760c1302f760b0b71999da32a45d06858acc5317b6d3c15
3
  size 133511213