Add SetFit ABSA model
Browse files- 1_Pooling/config.json +7 -0
- README.md +256 -0
- config.json +31 -0
- config_sentence_transformers.json +7 -0
- config_setfit.json +8 -0
- model_head.pkl +3 -0
- modules.json +20 -0
- pytorch_model.bin +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: setfit
|
3 |
+
tags:
|
4 |
+
- setfit
|
5 |
+
- absa
|
6 |
+
- absa
|
7 |
+
- absa
|
8 |
+
- absa
|
9 |
+
- absa
|
10 |
+
- absa
|
11 |
+
- absa
|
12 |
+
- absa
|
13 |
+
- absa
|
14 |
+
- absa
|
15 |
+
- sentence-transformers
|
16 |
+
- text-classification
|
17 |
+
- generated_from_setfit_trainer
|
18 |
+
metrics:
|
19 |
+
- accuracy
|
20 |
+
widget:
|
21 |
+
- text: people:Regardless of whether there are two people or two hundred people ahead
|
22 |
+
of you the hostess will take your name and tell you Five minutes.
|
23 |
+
- text: dish:This dish is my favorite and I always get it when I go there and never
|
24 |
+
get tired of it.
|
25 |
+
- text: food:Get your food to go, find a bench, and kick back with a plate of dumplings.
|
26 |
+
- text: crabmeat lasagna:You must have the crabmeat lasagna which is out of this world
|
27 |
+
and the chocolate bread pudding for dessert.
|
28 |
+
- text: plate:Get your food to go, find a bench, and kick back with a plate of dumplings.
|
29 |
+
pipeline_tag: text-classification
|
30 |
+
inference: false
|
31 |
+
co2_eq_emissions:
|
32 |
+
emissions: 12.403245052695876
|
33 |
+
source: codecarbon
|
34 |
+
training_type: fine-tuning
|
35 |
+
on_cloud: false
|
36 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
37 |
+
ram_total_size: 31.777088165283203
|
38 |
+
hours_used: 0.158
|
39 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
40 |
+
base_model: BAAI/bge-small-en-v1.5
|
41 |
+
model-index:
|
42 |
+
- name: SetFit Aspect Model Aspect Model Aspect Model Aspect Model Aspect Model Aspect
|
43 |
+
Model Aspect Model Aspect Model Aspect Model Aspect Model with BAAI/bge-small-en-v1.5
|
44 |
+
results:
|
45 |
+
- task:
|
46 |
+
type: text-classification
|
47 |
+
name: Text Classification
|
48 |
+
dataset:
|
49 |
+
name: Unknown
|
50 |
+
type: unknown
|
51 |
+
split: test
|
52 |
+
metrics:
|
53 |
+
- type: accuracy
|
54 |
+
value: 0.7871243108660857
|
55 |
+
name: Accuracy
|
56 |
+
---
|
57 |
+
|
58 |
+
# SetFit Aspect Model Aspect Model Aspect Model Aspect Model Aspect Model Aspect Model Aspect Model Aspect Model Aspect Model Aspect Model with BAAI/bge-small-en-v1.5
|
59 |
+
|
60 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Aspect Based Sentiment Analysis (ABSA). This SetFit model uses [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification. In particular, this model is in charge of filtering aspect span candidates.
|
61 |
+
|
62 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
63 |
+
|
64 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
65 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
66 |
+
|
67 |
+
This model was trained within the context of a larger system for ABSA, which looks like so:
|
68 |
+
|
69 |
+
1. Use a spaCy model to select possible aspect span candidates.
|
70 |
+
2. **Use this SetFit model to filter these possible aspect span candidates.**
|
71 |
+
3. Use a SetFit model to classify the filtered aspect span candidates.
|
72 |
+
|
73 |
+
## Model Details
|
74 |
+
|
75 |
+
### Model Description
|
76 |
+
- **Model Type:** SetFit
|
77 |
+
- **Sentence Transformer body:** [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5)
|
78 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
79 |
+
- **SetFitABSA Aspect Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect)
|
80 |
+
- **SetFitABSA Polarity Model:** [tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity](https://huggingface.co/tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity)
|
81 |
+
- **Maximum Sequence Length:** 512 tokens
|
82 |
+
- **Number of Classes:** 2 classes
|
83 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
84 |
+
<!-- - **Language:** Unknown -->
|
85 |
+
<!-- - **License:** Unknown -->
|
86 |
+
|
87 |
+
### Model Sources
|
88 |
+
|
89 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
90 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
91 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
92 |
+
|
93 |
+
### Model Labels
|
94 |
+
| Label | Examples |
|
95 |
+
|:----------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
96 |
+
| aspect | <ul><li>'staff:But the staff was so horrible to us.'</li><li>"food:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"food:The food is uniformly exceptional, with a very capable kitchen which will proudly whip up whatever you feel like eating, whether it's on the menu or not."</li></ul> |
|
97 |
+
| no aspect | <ul><li>"factor:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"deficiencies:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li><li>"Teodora:To be completely fair, the only redeeming factor was the food, which was above average, but couldn't make up for all the other deficiencies of Teodora."</li></ul> |
|
98 |
+
|
99 |
+
## Evaluation
|
100 |
+
|
101 |
+
### Metrics
|
102 |
+
| Label | Accuracy |
|
103 |
+
|:--------|:---------|
|
104 |
+
| **all** | 0.7871 |
|
105 |
+
|
106 |
+
## Uses
|
107 |
+
|
108 |
+
### Direct Use for Inference
|
109 |
+
|
110 |
+
First install the SetFit library:
|
111 |
+
|
112 |
+
```bash
|
113 |
+
pip install setfit
|
114 |
+
```
|
115 |
+
|
116 |
+
Then you can load this model and run inference.
|
117 |
+
|
118 |
+
```python
|
119 |
+
from setfit import AbsaModel
|
120 |
+
|
121 |
+
# Download from the 🤗 Hub
|
122 |
+
model = AbsaModel.from_pretrained(
|
123 |
+
"tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-aspect",
|
124 |
+
"tomaarsen/setfit-absa-bge-small-en-v1.5-restaurants-polarity",
|
125 |
+
)
|
126 |
+
# Run inference
|
127 |
+
preds = model("The food was great, but the venue is just way too busy.")
|
128 |
+
```
|
129 |
+
|
130 |
+
<!--
|
131 |
+
### Downstream Use
|
132 |
+
|
133 |
+
*List how someone could finetune this model on their own dataset.*
|
134 |
+
-->
|
135 |
+
|
136 |
+
<!--
|
137 |
+
### Out-of-Scope Use
|
138 |
+
|
139 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
140 |
+
-->
|
141 |
+
|
142 |
+
<!--
|
143 |
+
## Bias, Risks and Limitations
|
144 |
+
|
145 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
146 |
+
-->
|
147 |
+
|
148 |
+
<!--
|
149 |
+
### Recommendations
|
150 |
+
|
151 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
152 |
+
-->
|
153 |
+
|
154 |
+
## Training Details
|
155 |
+
|
156 |
+
### Training Set Metrics
|
157 |
+
| Training set | Min | Median | Max |
|
158 |
+
|:-------------|:----|:--------|:----|
|
159 |
+
| Word count | 4 | 19.3034 | 45 |
|
160 |
+
|
161 |
+
| Label | Training Sample Count |
|
162 |
+
|:----------|:----------------------|
|
163 |
+
| no aspect | 231 |
|
164 |
+
| aspect | 204 |
|
165 |
+
|
166 |
+
### Training Hyperparameters
|
167 |
+
- batch_size: (256, 256)
|
168 |
+
- num_epochs: (5, 5)
|
169 |
+
- max_steps: 5000
|
170 |
+
- sampling_strategy: oversampling
|
171 |
+
- body_learning_rate: (2e-05, 1e-05)
|
172 |
+
- head_learning_rate: 0.01
|
173 |
+
- loss: CosineSimilarityLoss
|
174 |
+
- distance_metric: cosine_distance
|
175 |
+
- margin: 0.25
|
176 |
+
- end_to_end: False
|
177 |
+
- use_amp: True
|
178 |
+
- warmup_proportion: 0.1
|
179 |
+
- seed: 42
|
180 |
+
- load_best_model_at_end: True
|
181 |
+
|
182 |
+
### Training Results
|
183 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
184 |
+
|:----------:|:-------:|:-------------:|:---------------:|
|
185 |
+
| 0.0027 | 1 | 0.2574 | - |
|
186 |
+
| 0.1340 | 50 | 0.2561 | - |
|
187 |
+
| 0.2681 | 100 | 0.251 | 0.2543 |
|
188 |
+
| 0.4021 | 150 | 0.2451 | - |
|
189 |
+
| 0.5362 | 200 | 0.242 | 0.2506 |
|
190 |
+
| 0.6702 | 250 | 0.2239 | - |
|
191 |
+
| **0.8043** | **300** | **0.0473** | **0.2499** |
|
192 |
+
| 0.9383 | 350 | 0.0098 | - |
|
193 |
+
| 1.0724 | 400 | 0.0097 | 0.2734 |
|
194 |
+
| 1.2064 | 450 | 0.0047 | - |
|
195 |
+
| 1.3405 | 500 | 0.0071 | 0.2834 |
|
196 |
+
| 1.4745 | 550 | 0.0089 | - |
|
197 |
+
| 1.6086 | 600 | 0.005 | 0.273 |
|
198 |
+
| 1.7426 | 650 | 0.0041 | - |
|
199 |
+
| 1.8767 | 700 | 0.0042 | 0.2942 |
|
200 |
+
| 2.0107 | 750 | 0.0053 | - |
|
201 |
+
| 2.1448 | 800 | 0.0073 | 0.2898 |
|
202 |
+
|
203 |
+
* The bold row denotes the saved checkpoint.
|
204 |
+
### Environmental Impact
|
205 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
206 |
+
- **Carbon Emitted**: 0.012 kg of CO2
|
207 |
+
- **Hours Used**: 0.158 hours
|
208 |
+
|
209 |
+
### Training Hardware
|
210 |
+
- **On Cloud**: No
|
211 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
212 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
213 |
+
- **RAM Size**: 31.78 GB
|
214 |
+
|
215 |
+
### Framework Versions
|
216 |
+
- Python: 3.9.16
|
217 |
+
- SetFit: 1.0.0.dev0
|
218 |
+
- Sentence Transformers: 2.2.2
|
219 |
+
- Transformers: 4.29.0
|
220 |
+
- PyTorch: 1.13.1+cu117
|
221 |
+
- Datasets: 2.15.0
|
222 |
+
- Tokenizers: 0.13.3
|
223 |
+
|
224 |
+
## Citation
|
225 |
+
|
226 |
+
### BibTeX
|
227 |
+
```bibtex
|
228 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
229 |
+
doi = {10.48550/ARXIV.2209.11055},
|
230 |
+
url = {https://arxiv.org/abs/2209.11055},
|
231 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
232 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
233 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
234 |
+
publisher = {arXiv},
|
235 |
+
year = {2022},
|
236 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
237 |
+
}
|
238 |
+
```
|
239 |
+
|
240 |
+
<!--
|
241 |
+
## Glossary
|
242 |
+
|
243 |
+
*Clearly define terms in order to be accessible across audiences.*
|
244 |
+
-->
|
245 |
+
|
246 |
+
<!--
|
247 |
+
## Model Card Authors
|
248 |
+
|
249 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
250 |
+
-->
|
251 |
+
|
252 |
+
<!--
|
253 |
+
## Model Card Contact
|
254 |
+
|
255 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
256 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "models\\step_300\\",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"hidden_act": "gelu",
|
9 |
+
"hidden_dropout_prob": 0.1,
|
10 |
+
"hidden_size": 384,
|
11 |
+
"id2label": {
|
12 |
+
"0": "LABEL_0"
|
13 |
+
},
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 1536,
|
16 |
+
"label2id": {
|
17 |
+
"LABEL_0": 0
|
18 |
+
},
|
19 |
+
"layer_norm_eps": 1e-12,
|
20 |
+
"max_position_embeddings": 512,
|
21 |
+
"model_type": "bert",
|
22 |
+
"num_attention_heads": 12,
|
23 |
+
"num_hidden_layers": 12,
|
24 |
+
"pad_token_id": 0,
|
25 |
+
"position_embedding_type": "absolute",
|
26 |
+
"torch_dtype": "float32",
|
27 |
+
"transformers_version": "4.29.0",
|
28 |
+
"type_vocab_size": 2,
|
29 |
+
"use_cache": true,
|
30 |
+
"vocab_size": 30522
|
31 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.28.1",
|
5 |
+
"pytorch": "1.13.0+cu117"
|
6 |
+
}
|
7 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": [
|
3 |
+
"no aspect",
|
4 |
+
"aspect"
|
5 |
+
],
|
6 |
+
"span_context": 0,
|
7 |
+
"normalize_embeddings": false
|
8 |
+
}
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:40981c12f3dc9655afbabd43a518ca9aaeb02bca44eb5812e3d98e8f04b90761
|
3 |
+
size 3919
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:053fcaf18552044f9fab2b6c2eccfceff2b5c353804ac31e4688befd443f7be5
|
3 |
+
size 133511213
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": true
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_basic_tokenize": true,
|
5 |
+
"do_lower_case": true,
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"model_max_length": 512,
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "BertTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|