File size: 8,297 Bytes
67a38be |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 |
---
language:
- tl
license: gpl-3.0
library_name: span-marker
tags:
- span-marker
- token-classification
- ner
- named-entity-recognition
- generated_from_span_marker_trainer
datasets:
- ljvmiranda921/tlunified-ner
metrics:
- precision
- recall
- f1
widget:
- text: MANILA - Binalewala ng Philippine National Police (PNP) nitong Sabado ang
posibleng paglulunsad ng tinatawag na " sympathy attacks " ng Moro National Liberation
Front (MNLF) at Abu Sayyaf matapos arestuhin si Indanan, Sulu Mayor Alvarez Isnaji.
- text: Pinatawan din ng apat na buwang suspensyon si Herma Gonzales - Escudero, chief
revenue officer III ng BIR - Cotabato City, dahil sa kasong dishonesty at limang
kaso ng perjury sa Municipal Trial Court ng Cotabato City . Bunga ito ng kanyang
kabiguan na ideklara sa kanyang SALN noong 2002 - 2004 ang 200 metro kwadradong
lote sa South Cotabato at Toyota Revo noong 2001 SALN at undervaluation ng kanyang
mga ari - arian sa lalawigan noong 2000 - 2004 SALN.
- text: Sa tila pagpapabaya sa mga magsasaka, sinabi ni Escudero na hindi mangyayari
ang pangarap ng Department of Agriculture (DA) na maging self - sufficient ang
Pilipinas sa bigas.
- text: MANILA - Tiniyak ng pinuno ng Government Service Insurance System (GSIS) na
tatapatan nito ang pro - Meralco advertisement ni Judy Ann Santos upang isulong
ang kanyang posisyon na dapat ibaba ang singil sa kuryente.
- text: Idinagdag ni South Cotabato Rep Darlene Antonino - Custodio, na illegal na
ipagpaliban ang halalan sa ARMM kung ang gagamitin lamang basehan ay ang ipapasang
panukala ng Kongreso.
pipeline_tag: token-classification
co2_eq_emissions:
emissions: 22.090476722294312
source: codecarbon
training_type: fine-tuning
on_cloud: false
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
ram_total_size: 31.777088165283203
hours_used: 0.238
hardware_used: 1 x NVIDIA GeForce RTX 3090
base_model: bert-base-multilingual-cased
model-index:
- name: SpanMarker with bert-base-multilingual-cased on TLUnified
results:
- task:
type: token-classification
name: Named Entity Recognition
dataset:
name: TLUnified
type: ljvmiranda921/tlunified-ner
split: test
metrics:
- type: f1
value: 0.8886810102899907
name: F1
- type: precision
value: 0.8736971183323115
name: Precision
- type: recall
value: 0.9041878172588832
name: Recall
---
# SpanMarker with bert-base-multilingual-cased on TLUnified
This is a [SpanMarker](https://github.com/tomaarsen/SpanMarkerNER) model trained on the [TLUnified](https://huggingface.co/datasets/ljvmiranda921/tlunified-ner) dataset that can be used for Named Entity Recognition. This SpanMarker model uses [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) as the underlying encoder.
## Model Details
### Model Description
- **Model Type:** SpanMarker
- **Encoder:** [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased)
- **Maximum Sequence Length:** 256 tokens
- **Maximum Entity Length:** 8 words
- **Training Dataset:** [TLUnified](https://huggingface.co/datasets/ljvmiranda921/tlunified-ner)
- **Language:** tl
- **License:** gpl-3.0
### Model Sources
- **Repository:** [SpanMarker on GitHub](https://github.com/tomaarsen/SpanMarkerNER)
- **Thesis:** [SpanMarker For Named Entity Recognition](https://raw.githubusercontent.com/tomaarsen/SpanMarkerNER/main/thesis.pdf)
### Model Labels
| Label | Examples |
|:------|:----------------------------------------------------------------------------------------------------|
| LOC | "Israel", "Batasan", "United States" |
| ORG | "MMDA", "International Monitoring Team", "Coordinating Committees for the Cessation of Hostilities" |
| PER | "Puno", "Fernando", "Villavicencio" |
## Evaluation
### Metrics
| Label | Precision | Recall | F1 |
|:--------|:----------|:-------|:-------|
| **all** | 0.8737 | 0.9042 | 0.8887 |
| LOC | 0.8830 | 0.9084 | 0.8955 |
| ORG | 0.7579 | 0.8587 | 0.8052 |
| PER | 0.9264 | 0.9220 | 0.9242 |
## Uses
### Direct Use for Inference
```python
from span_marker import SpanMarkerModel
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-mbert-base-tlunified")
# Run inference
entities = model.predict("Idinagdag ni South Cotabato Rep Darlene Antonino - Custodio, na illegal na ipagpaliban ang halalan sa ARMM kung ang gagamitin lamang basehan ay ang ipapasang panukala ng Kongreso.")
```
### Downstream Use
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
```python
from span_marker import SpanMarkerModel, Trainer
# Download from the 🤗 Hub
model = SpanMarkerModel.from_pretrained("tomaarsen/span-marker-mbert-base-tlunified")
# Specify a Dataset with "tokens" and "ner_tag" columns
dataset = load_dataset("conll2003") # For example CoNLL2003
# Initialize a Trainer using the pretrained model & dataset
trainer = Trainer(
model=model,
train_dataset=dataset["train"],
eval_dataset=dataset["validation"],
)
trainer.train()
trainer.save_model("tomaarsen/span-marker-mbert-base-tlunified-finetuned")
```
</details>
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:----------------------|:----|:--------|:----|
| Sentence length | 1 | 31.7625 | 150 |
| Entities per sentence | 0 | 2.0661 | 38 |
### Training Hyperparameters
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
### Training Results
| Epoch | Step | Validation Loss | Validation Precision | Validation Recall | Validation F1 | Validation Accuracy |
|:------:|:----:|:---------------:|:--------------------:|:-----------------:|:-------------:|:-------------------:|
| 0.6803 | 400 | 0.0074 | 0.8552 | 0.8835 | 0.8691 | 0.9774 |
| 1.3605 | 800 | 0.0072 | 0.8709 | 0.9034 | 0.8869 | 0.9798 |
| 2.0408 | 1200 | 0.0070 | 0.8753 | 0.9053 | 0.8900 | 0.9812 |
| 2.7211 | 1600 | 0.0065 | 0.8876 | 0.9003 | 0.8939 | 0.9807 |
### Environmental Impact
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
- **Carbon Emitted**: 0.022 kg of CO2
- **Hours Used**: 0.238 hours
### Training Hardware
- **On Cloud**: No
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
- **RAM Size**: 31.78 GB
### Framework Versions
- Python: 3.9.16
- SpanMarker: 1.5.1.dev
- Transformers: 4.30.0
- PyTorch: 2.0.1+cu118
- Datasets: 2.14.0
- Tokenizers: 0.13.3
## Citation
### BibTeX
```
@software{Aarsen_SpanMarker,
author = {Aarsen, Tom},
license = {Apache-2.0},
title = {{SpanMarker for Named Entity Recognition}},
url = {https://github.com/tomaarsen/SpanMarkerNER}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |