tomaarsen HF staff commited on
Commit
477b3ec
·
verified ·
1 Parent(s): 52675bb

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,470 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated
10
+ base_model: microsoft/mpnet-base
11
+ metrics:
12
+ - accuracy
13
+ widget:
14
+ - source_sentence: Many youth are lazy.
15
+ sentences:
16
+ - Lincoln took his hat off.
17
+ - At the end of the fourth century was when baked goods flourished.
18
+ - DOD's common practice for managing this environment has been to create aggressive
19
+ risk reduction efforts in its programs.
20
+ - source_sentence: a guy on a bike
21
+ sentences:
22
+ - A man is on a bike.
23
+ - two men sit in a train car
24
+ - She is the boy's aunt.
25
+ - source_sentence: The dog is wet.
26
+ sentences:
27
+ - A child and small dog running.
28
+ - The man is riding a sheep.
29
+ - The man is doing a bike trick.
30
+ - source_sentence: yeah really no kidding
31
+ sentences:
32
+ - 'Really? No kidding! '
33
+ - yeah i mean just when uh the they military paid for her education
34
+ - Changes were made to the Grant Renewal Application to provide extra information
35
+ to the LSC.
36
+ - source_sentence: 'Harlem did a great job '
37
+ sentences:
38
+ - 'Missouri was happy to continue it''s planning efforts. '
39
+ - yeah i mean just when uh the they military paid for her education
40
+ - I know exactly.
41
+ pipeline_tag: sentence-similarity
42
+ co2_eq_emissions:
43
+ emissions: 18.165192544667764
44
+ source: codecarbon
45
+ training_type: fine-tuning
46
+ on_cloud: false
47
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
48
+ ram_total_size: 31.777088165283203
49
+ hours_used: 0.141
50
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
51
+ ---
52
+
53
+ # SentenceTransformer
54
+
55
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli), [snli](https://huggingface.co/datasets/stanfordnlp/snli) and [stsb](https://huggingface.co/datasets/mteb/stsbenchmark-sts) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
56
+
57
+ ## Model Details
58
+
59
+ ### Model Description
60
+ - **Model Type:** Sentence Transformer
61
+ - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base)
62
+ - **Maximum Sequence Length:** 384 tokens
63
+ - **Output Dimensionality:** 768 tokens
64
+ - **Training Datasets:**
65
+ - [multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli)
66
+ - [snli](https://huggingface.co/datasets/stanfordnlp/snli)
67
+ - [stsb](https://huggingface.co/datasets/mteb/stsbenchmark-sts)
68
+ - **Language:** en
69
+ <!-- - **License:** Unknown -->
70
+
71
+ ### Model Sources
72
+
73
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
74
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
75
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
76
+
77
+ ### Full Model Architecture
78
+
79
+ ```
80
+ SentenceTransformer(
81
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
82
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
83
+ )
84
+ ```
85
+
86
+ ## Usage
87
+
88
+ ### Direct Usage (Sentence Transformers)
89
+
90
+ First install the Sentence Transformers library:
91
+
92
+ ```bash
93
+ pip install -U sentence-transformers
94
+ ```
95
+
96
+ Then you can load this model and run inference.
97
+ ```python
98
+ from sentence_transformers import SentenceTransformer
99
+
100
+ # Download from the 🤗 Hub
101
+ model = SentenceTransformer("tomaarsen/st-v3-test-mpnet-base-allnli-stsb")
102
+ # Run inference
103
+ sentences = [
104
+ "Harlem did a great job ",
105
+ "Missouri was happy to continue it's planning efforts. ",
106
+ "yeah i mean just when uh the they military paid for her education",
107
+ ]
108
+ embeddings = model.encode(sentences)
109
+ print(embeddings.shape)
110
+ # [3, 768]
111
+ ```
112
+
113
+ <!--
114
+ ### Direct Usage (Transformers)
115
+
116
+ <details><summary>Click to see the direct usage in Transformers</summary>
117
+
118
+ </details>
119
+ -->
120
+
121
+ <!--
122
+ ### Downstream Usage (Sentence Transformers)
123
+
124
+ You can finetune this model on your own dataset.
125
+
126
+ <details><summary>Click to expand</summary>
127
+
128
+ </details>
129
+ -->
130
+
131
+ <!--
132
+ ### Out-of-Scope Use
133
+
134
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
135
+ -->
136
+
137
+ <!--
138
+ ## Bias, Risks and Limitations
139
+
140
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
141
+ -->
142
+
143
+ <!--
144
+ ### Recommendations
145
+
146
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
147
+ -->
148
+
149
+ ## Training Details
150
+
151
+ ### Training Datasets
152
+
153
+ #### multi_nli
154
+
155
+ * Dataset: [multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli) at [da70db2](https://huggingface.co/datasets/nyu-mll/multi_nli/tree/da70db2af9d09693783c3320c4249840212ee221)
156
+ * Size: 10,000 training samples
157
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
158
+ * Approximate statistics based on the first 1000 samples:
159
+ | | premise | hypothesis | label |
160
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
161
+ | type | string | string | int |
162
+ | details | <ul><li>min: 4 tokens</li><li>mean: 26.95 tokens</li><li>max: 189 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.11 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~34.30%</li><li>1: ~28.20%</li><li>2: ~37.50%</li></ul> |
163
+ * Samples:
164
+ | premise | hypothesis | label |
165
+ |:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------|
166
+ | <code>Conceptually cream skimming has two basic dimensions - product and geography.</code> | <code>Product and geography are what make cream skimming work. </code> | <code>1</code> |
167
+ | <code>you know during the season and i guess at at your level uh you lose them to the next level if if they decide to recall the the parent team the Braves decide to call to recall a guy from triple A then a double A guy goes up to replace him and a single A guy goes up to replace him</code> | <code>You lose the things to the following level if the people recall.</code> | <code>0</code> |
168
+ | <code>One of our number will carry out your instructions minutely.</code> | <code>A member of my team will execute your orders with immense precision.</code> | <code>0</code> |
169
+ * Loss: [<code>sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss)
170
+
171
+ #### snli
172
+
173
+ * Dataset: [snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
174
+ * Size: 10,000 training samples
175
+ * Columns: <code>snli_premise</code>, <code>hypothesis</code>, and <code>label</code>
176
+ * Approximate statistics based on the first 1000 samples:
177
+ | | snli_premise | hypothesis | label |
178
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------|
179
+ | type | string | string | int |
180
+ | details | <ul><li>min: 6 tokens</li><li>mean: 17.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.7 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
181
+ * Samples:
182
+ | snli_premise | hypothesis | label |
183
+ |:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
184
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>1</code> |
185
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>2</code> |
186
+ | <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
187
+ * Loss: [<code>sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss)
188
+
189
+ #### stsb
190
+
191
+ * Dataset: [stsb](https://huggingface.co/datasets/mteb/stsbenchmark-sts) at [8913289](https://huggingface.co/datasets/mteb/stsbenchmark-sts/tree/8913289635987208e6e7c72789e4be2fe94b6abd)
192
+ * Size: 5,749 training samples
193
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
194
+ * Approximate statistics based on the first 1000 samples:
195
+ | | sentence1 | sentence2 | label |
196
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
197
+ | type | string | string | float |
198
+ | details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
199
+ * Samples:
200
+ | sentence1 | sentence2 | label |
201
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
202
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
203
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
204
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
205
+ * Loss: [<code>sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
206
+ ```json
207
+ {
208
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
209
+ }
210
+ ```
211
+
212
+ ### Evaluation Datasets
213
+
214
+ #### multi_nli
215
+
216
+ * Dataset: [multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli) at [da70db2](https://huggingface.co/datasets/nyu-mll/multi_nli/tree/da70db2af9d09693783c3320c4249840212ee221)
217
+ * Size: 100 evaluation samples
218
+ * Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
219
+ * Approximate statistics based on the first 1000 samples:
220
+ | | premise | hypothesis | label |
221
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
222
+ | type | string | string | int |
223
+ | details | <ul><li>min: 5 tokens</li><li>mean: 27.67 tokens</li><li>max: 138 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.48 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>0: ~35.00%</li><li>1: ~31.00%</li><li>2: ~34.00%</li></ul> |
224
+ * Samples:
225
+ | premise | hypothesis | label |
226
+ |:---------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------|
227
+ | <code>The new rights are nice enough</code> | <code>Everyone really likes the newest benefits </code> | <code>1</code> |
228
+ | <code>This site includes a list of all award winners and a searchable database of Government Executive articles.</code> | <code>The Government Executive articles housed on the website are not able to be searched.</code> | <code>2</code> |
229
+ | <code>uh i don't know i i have mixed emotions about him uh sometimes i like him but at the same times i love to see somebody beat him</code> | <code>I like him for the most part, but would still enjoy seeing someone beat him.</code> | <code>0</code> |
230
+ * Loss: [<code>sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss)
231
+
232
+ #### snli
233
+
234
+ * Dataset: [snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
235
+ * Size: 9,842 evaluation samples
236
+ * Columns: <code>snli_premise</code>, <code>hypothesis</code>, and <code>label</code>
237
+ * Approximate statistics based on the first 1000 samples:
238
+ | | snli_premise | hypothesis | label |
239
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
240
+ | type | string | string | int |
241
+ | details | <ul><li>min: 6 tokens</li><li>mean: 18.44 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.57 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> |
242
+ * Samples:
243
+ | snli_premise | hypothesis | label |
244
+ |:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------|
245
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>1</code> |
246
+ | <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>0</code> |
247
+ | <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code> | <code>2</code> |
248
+ * Loss: [<code>sentence_transformers.losses.SoftmaxLoss.SoftmaxLoss</code>](https://sbert.net/docs/package_reference/losses.html#softmaxloss)
249
+
250
+ #### stsb
251
+
252
+ * Dataset: [stsb](https://huggingface.co/datasets/mteb/stsbenchmark-sts) at [8913289](https://huggingface.co/datasets/mteb/stsbenchmark-sts/tree/8913289635987208e6e7c72789e4be2fe94b6abd)
253
+ * Size: 1,500 evaluation samples
254
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
255
+ * Approximate statistics based on the first 1000 samples:
256
+ | | sentence1 | sentence2 | label |
257
+ |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
258
+ | type | string | string | float |
259
+ | details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
260
+ * Samples:
261
+ | sentence1 | sentence2 | label |
262
+ |:--------------------------------------------------|:------------------------------------------------------|:------------------|
263
+ | <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
264
+ | <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
265
+ | <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
266
+ * Loss: [<code>sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/losses.html#cosinesimilarityloss) with these parameters:
267
+ ```json
268
+ {
269
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
270
+ }
271
+ ```
272
+
273
+ ### Training Hyperparameters
274
+ #### Non-Default Hyperparameters
275
+
276
+ - per_device_train_batch_size: 128
277
+ - per_device_eval_batch_size: 128
278
+ - learning_rate: 2e-05
279
+ - num_train_epochs: 1
280
+ - warmup_ratio: 0.1
281
+ - seed: 33
282
+ - bf16: True
283
+
284
+ #### All Hyperparameters
285
+ <details><summary>Click to expand</summary>
286
+
287
+ - overwrite_output_dir: False
288
+ - do_predict: False
289
+ - prediction_loss_only: False
290
+ - per_device_train_batch_size: 128
291
+ - per_device_eval_batch_size: 128
292
+ - per_gpu_train_batch_size: None
293
+ - per_gpu_eval_batch_size: None
294
+ - gradient_accumulation_steps: 1
295
+ - eval_accumulation_steps: None
296
+ - learning_rate: 2e-05
297
+ - weight_decay: 0.0
298
+ - adam_beta1: 0.9
299
+ - adam_beta2: 0.999
300
+ - adam_epsilon: 1e-08
301
+ - max_grad_norm: 1.0
302
+ - num_train_epochs: 1
303
+ - max_steps: -1
304
+ - lr_scheduler_type: linear
305
+ - lr_scheduler_kwargs: {}
306
+ - warmup_ratio: 0.1
307
+ - warmup_steps: 0
308
+ - log_level: passive
309
+ - log_level_replica: warning
310
+ - log_on_each_node: True
311
+ - logging_nan_inf_filter: True
312
+ - save_safetensors: True
313
+ - save_on_each_node: False
314
+ - save_only_model: False
315
+ - no_cuda: False
316
+ - use_cpu: False
317
+ - use_mps_device: False
318
+ - seed: 33
319
+ - data_seed: None
320
+ - jit_mode_eval: False
321
+ - use_ipex: False
322
+ - bf16: True
323
+ - fp16: False
324
+ - fp16_opt_level: O1
325
+ - half_precision_backend: auto
326
+ - bf16_full_eval: False
327
+ - fp16_full_eval: False
328
+ - tf32: None
329
+ - local_rank: 0
330
+ - ddp_backend: None
331
+ - tpu_num_cores: None
332
+ - tpu_metrics_debug: False
333
+ - debug: []
334
+ - dataloader_drop_last: False
335
+ - dataloader_num_workers: 0
336
+ - dataloader_prefetch_factor: None
337
+ - past_index: -1
338
+ - disable_tqdm: False
339
+ - remove_unused_columns: True
340
+ - label_names: None
341
+ - load_best_model_at_end: False
342
+ - ignore_data_skip: False
343
+ - fsdp: []
344
+ - fsdp_min_num_params: 0
345
+ - fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
346
+ - fsdp_transformer_layer_cls_to_wrap: None
347
+ - accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True}
348
+ - deepspeed: None
349
+ - label_smoothing_factor: 0.0
350
+ - optim: adamw_torch
351
+ - optim_args: None
352
+ - adafactor: False
353
+ - group_by_length: False
354
+ - length_column_name: length
355
+ - ddp_find_unused_parameters: None
356
+ - ddp_bucket_cap_mb: None
357
+ - ddp_broadcast_buffers: None
358
+ - dataloader_pin_memory: True
359
+ - dataloader_persistent_workers: False
360
+ - skip_memory_metrics: True
361
+ - use_legacy_prediction_loop: False
362
+ - push_to_hub: False
363
+ - resume_from_checkpoint: None
364
+ - hub_model_id: None
365
+ - hub_strategy: every_save
366
+ - hub_private_repo: False
367
+ - hub_always_push: False
368
+ - gradient_checkpointing: False
369
+ - gradient_checkpointing_kwargs: None
370
+ - include_inputs_for_metrics: False
371
+ - fp16_backend: auto
372
+ - push_to_hub_model_id: None
373
+ - push_to_hub_organization: None
374
+ - mp_parameters:
375
+ - auto_find_batch_size: False
376
+ - full_determinism: False
377
+ - torchdynamo: None
378
+ - ray_scope: last
379
+ - ddp_timeout: 1800
380
+ - torch_compile: False
381
+ - torch_compile_backend: None
382
+ - torch_compile_mode: None
383
+ - dispatch_batches: None
384
+ - split_batches: None
385
+ - include_tokens_per_second: False
386
+ - include_num_input_tokens_seen: False
387
+ - neftune_noise_alpha: None
388
+ - optim_target_modules: None
389
+ - round_robin_sampler: False
390
+
391
+ </details>
392
+
393
+ ### Training Logs
394
+ | Epoch | Step | Training Loss | multi_nli | snli | stsb |
395
+ |:------:|:----:|:-------------:|:---------:|:------:|:------:|
396
+ | 0.0493 | 10 | 0.9204 | 1.0998 | 1.1022 | 0.2997 |
397
+ | 0.0985 | 20 | 1.0074 | 1.0983 | 1.0971 | 0.2499 |
398
+ | 0.1478 | 30 | 1.0037 | 1.0994 | 1.0939 | 0.1667 |
399
+ | 0.1970 | 40 | 0.7961 | 1.0945 | 1.0877 | 0.0814 |
400
+ | 0.2463 | 50 | 0.9882 | 1.0950 | 1.0806 | 0.0840 |
401
+ | 0.2956 | 60 | 0.7814 | 1.0873 | 1.0711 | 0.0681 |
402
+ | 0.3448 | 70 | 0.6678 | 1.0829 | 1.0673 | 0.0504 |
403
+ | 0.3941 | 80 | 0.7669 | 1.0771 | 1.0638 | 0.0501 |
404
+ | 0.4433 | 90 | 0.9718 | 1.0704 | 1.0517 | 0.0482 |
405
+ | 0.4926 | 100 | 0.8494 | 1.0609 | 1.0388 | 0.0526 |
406
+ | 0.5419 | 110 | 0.745 | 1.0631 | 1.0285 | 0.0527 |
407
+ | 0.5911 | 120 | 0.6416 | 1.0564 | 1.0148 | 0.0588 |
408
+ | 0.6404 | 130 | 1.0331 | 1.0504 | 1.0026 | 0.0627 |
409
+ | 0.6897 | 140 | 0.8305 | 1.0417 | 1.0023 | 0.0664 |
410
+ | 0.7389 | 150 | 0.7362 | 1.0282 | 0.9937 | 0.0672 |
411
+ | 0.7882 | 160 | 0.7164 | 1.0288 | 0.9930 | 0.0688 |
412
+ | 0.8374 | 170 | 0.8217 | 1.0264 | 0.9819 | 0.0677 |
413
+ | 0.8867 | 180 | 0.9046 | 1.0200 | 0.9734 | 0.0742 |
414
+ | 0.9360 | 190 | 0.5327 | 1.0221 | 0.9764 | 0.0698 |
415
+ | 0.9852 | 200 | 0.8974 | 1.0233 | 0.9776 | 0.0691 |
416
+
417
+
418
+ ### Environmental Impact
419
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
420
+ - **Carbon Emitted**: 0.018 kg of CO2
421
+ - **Hours Used**: 0.141 hours
422
+
423
+ ### Training Hardware
424
+ - **On Cloud**: No
425
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
426
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
427
+ - **RAM Size**: 31.78 GB
428
+
429
+ ### Framework Versions
430
+ - Python: 3.11.6
431
+ - Sentence Transformers: 2.7.0.dev0
432
+ - Transformers: 4.39.3
433
+ - PyTorch: 2.1.0+cu121
434
+ - Accelerate: 0.26.1
435
+ - Datasets: 2.18.0
436
+ - Tokenizers: 0.15.2
437
+
438
+ ## Citation
439
+
440
+ ### BibTeX
441
+ #### Sentence Transformers
442
+ ```bibtex
443
+ @inproceedings{reimers-2019-sentence-bert,
444
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
445
+ author = "Reimers, Nils and Gurevych, Iryna",
446
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
447
+ month = "11",
448
+ year = "2019",
449
+ publisher = "Association for Computational Linguistics",
450
+ url = "https://arxiv.org/abs/1908.10084",
451
+ }
452
+ ```
453
+
454
+ <!--
455
+ ## Glossary
456
+
457
+ *Clearly define terms in order to be accessible across audiences.*
458
+ -->
459
+
460
+ <!--
461
+ ## Model Card Authors
462
+
463
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
464
+ -->
465
+
466
+ <!--
467
+ ## Model Card Contact
468
+
469
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
470
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "microsoft/mpnet-base",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.39.3",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.7.0.dev0",
4
+ "transformers": "4.39.3",
5
+ "pytorch": "2.1.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null
9
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d3cb8b37cb903e8fff0694a014f7a025675929a40ee90b9d5f887df4530a281e
3
+ size 437967672
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": true,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "104": {
36
+ "content": "[UNK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ },
43
+ "30526": {
44
+ "content": "<mask>",
45
+ "lstrip": true,
46
+ "normalized": false,
47
+ "rstrip": false,
48
+ "single_word": false,
49
+ "special": true
50
+ }
51
+ },
52
+ "bos_token": "<s>",
53
+ "clean_up_tokenization_spaces": true,
54
+ "cls_token": "<s>",
55
+ "do_lower_case": true,
56
+ "eos_token": "</s>",
57
+ "mask_token": "<mask>",
58
+ "model_max_length": 384,
59
+ "pad_token": "<pad>",
60
+ "sep_token": "</s>",
61
+ "strip_accents": null,
62
+ "tokenize_chinese_chars": true,
63
+ "tokenizer_class": "MPNetTokenizer",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff