tomasravel commited on
Commit
276aad3
·
verified ·
1 Parent(s): 2a9a547

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,399 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/paraphrase-MiniLM-L6-v2
3
+ datasets: []
4
+ language: []
5
+ library_name: sentence-transformers
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - sentence-transformers
9
+ - sentence-similarity
10
+ - feature-extraction
11
+ - generated_from_trainer
12
+ - dataset_size:75253
13
+ - loss:CoSENTLoss
14
+ widget:
15
+ - source_sentence: buenos aires general pueyrredon mar del plata calle 395
16
+ sentences:
17
+ - buenos aires lujan de cuyo mar del plata calle 395
18
+ - buenos aires general pueyrredon mar del plata calle 499
19
+ - buenos aires general pueyrredon calle 15
20
+ - source_sentence: buenos aires bahia blanca chacabuco
21
+ sentences:
22
+ - jujuy ciudad autonoma buenos aires av eva peron
23
+ - buenos aires caada de gomez cadetes
24
+ - buenos aires bahia blanca migueletes
25
+ - source_sentence: buenos aires bahia blanca curumalal
26
+ sentences:
27
+ - buenos aires punilla mar del plata corbeta uruguay
28
+ - capital federal ciudad autonoma buenos aires av rey del bosque
29
+ - buenos aires rio chico curumalal
30
+ - source_sentence: buenos aires lomas de zamora sixto fernandez
31
+ sentences:
32
+ - buenos aires general pueyrredon santa rosa de calamuchita san lorenzo
33
+ - buenos aires jose ingenieros sixto fernandez
34
+ - buenos aires lomas de zamora florida luis viale
35
+ - source_sentence: buenos aires moreno francisco alvarez paramaribo
36
+ sentences:
37
+ - mendoza general pueyrredon mar del plata calle 3 b
38
+ - buenos aires moreno francisco alvarez bermejo
39
+ - buenos aires ezeiza av 60
40
+ ---
41
+
42
+ # SentenceTransformer based on sentence-transformers/paraphrase-MiniLM-L6-v2
43
+
44
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** Sentence Transformer
50
+ - **Base model:** [sentence-transformers/paraphrase-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/paraphrase-MiniLM-L6-v2) <!-- at revision 3bf4ae7445aa77c8daaef06518dd78baffff53c9 -->
51
+ - **Maximum Sequence Length:** 128 tokens
52
+ - **Output Dimensionality:** 384 tokens
53
+ - **Similarity Function:** Cosine Similarity
54
+ <!-- - **Training Dataset:** Unknown -->
55
+ <!-- - **Language:** Unknown -->
56
+ <!-- - **License:** Unknown -->
57
+
58
+ ### Model Sources
59
+
60
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
61
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
62
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
63
+
64
+ ### Full Model Architecture
65
+
66
+ ```
67
+ SentenceTransformer(
68
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
69
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
70
+ )
71
+ ```
72
+
73
+ ## Usage
74
+
75
+ ### Direct Usage (Sentence Transformers)
76
+
77
+ First install the Sentence Transformers library:
78
+
79
+ ```bash
80
+ pip install -U sentence-transformers
81
+ ```
82
+
83
+ Then you can load this model and run inference.
84
+ ```python
85
+ from sentence_transformers import SentenceTransformer
86
+
87
+ # Download from the 🤗 Hub
88
+ model = SentenceTransformer("tomasravel/modelo_finetuneado24")
89
+ # Run inference
90
+ sentences = [
91
+ 'buenos aires moreno francisco alvarez paramaribo',
92
+ 'buenos aires moreno francisco alvarez bermejo',
93
+ 'mendoza general pueyrredon mar del plata calle 3 b',
94
+ ]
95
+ embeddings = model.encode(sentences)
96
+ print(embeddings.shape)
97
+ # [3, 384]
98
+
99
+ # Get the similarity scores for the embeddings
100
+ similarities = model.similarity(embeddings, embeddings)
101
+ print(similarities.shape)
102
+ # [3, 3]
103
+ ```
104
+
105
+ <!--
106
+ ### Direct Usage (Transformers)
107
+
108
+ <details><summary>Click to see the direct usage in Transformers</summary>
109
+
110
+ </details>
111
+ -->
112
+
113
+ <!--
114
+ ### Downstream Usage (Sentence Transformers)
115
+
116
+ You can finetune this model on your own dataset.
117
+
118
+ <details><summary>Click to expand</summary>
119
+
120
+ </details>
121
+ -->
122
+
123
+ <!--
124
+ ### Out-of-Scope Use
125
+
126
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
127
+ -->
128
+
129
+ <!--
130
+ ## Bias, Risks and Limitations
131
+
132
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
133
+ -->
134
+
135
+ <!--
136
+ ### Recommendations
137
+
138
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
139
+ -->
140
+
141
+ ## Training Details
142
+
143
+ ### Training Dataset
144
+
145
+ #### Unnamed Dataset
146
+
147
+
148
+ * Size: 75,253 training samples
149
+ * Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
150
+ * Approximate statistics based on the first 1000 samples:
151
+ | | sentence_0 | sentence_1 | label |
152
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
153
+ | type | string | string | float |
154
+ | details | <ul><li>min: 4 tokens</li><li>mean: 13.46 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 13.0 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 0.2</li><li>mean: 0.69</li><li>max: 1.0</li></ul> |
155
+ * Samples:
156
+ | sentence_0 | sentence_1 | label |
157
+ |:--------------------------------------------------------------------|:------------------------------------------------------------|:-----------------|
158
+ | <code>buenos aires lomas de zamora temperley cangallo</code> | <code>buenos aires lomas de zamora cangallo</code> | <code>1.0</code> |
159
+ | <code>buenos aires general pueyrredon mar del plata calle 33</code> | <code>buenos aires maximo paz mar del plata calle 33</code> | <code>0.6</code> |
160
+ | <code>buenos aires general pueyrredon mar del plata cordoba</code> | <code>buenos aires washington mar del plata cordoba</code> | <code>0.6</code> |
161
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
162
+ ```json
163
+ {
164
+ "scale": 20.0,
165
+ "similarity_fct": "pairwise_cos_sim"
166
+ }
167
+ ```
168
+
169
+ ### Training Hyperparameters
170
+ #### Non-Default Hyperparameters
171
+
172
+ - `per_device_train_batch_size`: 32
173
+ - `per_device_eval_batch_size`: 32
174
+ - `num_train_epochs`: 10
175
+ - `multi_dataset_batch_sampler`: round_robin
176
+
177
+ #### All Hyperparameters
178
+ <details><summary>Click to expand</summary>
179
+
180
+ - `overwrite_output_dir`: False
181
+ - `do_predict`: False
182
+ - `eval_strategy`: no
183
+ - `prediction_loss_only`: True
184
+ - `per_device_train_batch_size`: 32
185
+ - `per_device_eval_batch_size`: 32
186
+ - `per_gpu_train_batch_size`: None
187
+ - `per_gpu_eval_batch_size`: None
188
+ - `gradient_accumulation_steps`: 1
189
+ - `eval_accumulation_steps`: None
190
+ - `torch_empty_cache_steps`: None
191
+ - `learning_rate`: 5e-05
192
+ - `weight_decay`: 0.0
193
+ - `adam_beta1`: 0.9
194
+ - `adam_beta2`: 0.999
195
+ - `adam_epsilon`: 1e-08
196
+ - `max_grad_norm`: 1
197
+ - `num_train_epochs`: 10
198
+ - `max_steps`: -1
199
+ - `lr_scheduler_type`: linear
200
+ - `lr_scheduler_kwargs`: {}
201
+ - `warmup_ratio`: 0.0
202
+ - `warmup_steps`: 0
203
+ - `log_level`: passive
204
+ - `log_level_replica`: warning
205
+ - `log_on_each_node`: True
206
+ - `logging_nan_inf_filter`: True
207
+ - `save_safetensors`: True
208
+ - `save_on_each_node`: False
209
+ - `save_only_model`: False
210
+ - `restore_callback_states_from_checkpoint`: False
211
+ - `no_cuda`: False
212
+ - `use_cpu`: False
213
+ - `use_mps_device`: False
214
+ - `seed`: 42
215
+ - `data_seed`: None
216
+ - `jit_mode_eval`: False
217
+ - `use_ipex`: False
218
+ - `bf16`: False
219
+ - `fp16`: False
220
+ - `fp16_opt_level`: O1
221
+ - `half_precision_backend`: auto
222
+ - `bf16_full_eval`: False
223
+ - `fp16_full_eval`: False
224
+ - `tf32`: None
225
+ - `local_rank`: 0
226
+ - `ddp_backend`: None
227
+ - `tpu_num_cores`: None
228
+ - `tpu_metrics_debug`: False
229
+ - `debug`: []
230
+ - `dataloader_drop_last`: False
231
+ - `dataloader_num_workers`: 0
232
+ - `dataloader_prefetch_factor`: None
233
+ - `past_index`: -1
234
+ - `disable_tqdm`: False
235
+ - `remove_unused_columns`: True
236
+ - `label_names`: None
237
+ - `load_best_model_at_end`: False
238
+ - `ignore_data_skip`: False
239
+ - `fsdp`: []
240
+ - `fsdp_min_num_params`: 0
241
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
242
+ - `fsdp_transformer_layer_cls_to_wrap`: None
243
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
244
+ - `deepspeed`: None
245
+ - `label_smoothing_factor`: 0.0
246
+ - `optim`: adamw_torch
247
+ - `optim_args`: None
248
+ - `adafactor`: False
249
+ - `group_by_length`: False
250
+ - `length_column_name`: length
251
+ - `ddp_find_unused_parameters`: None
252
+ - `ddp_bucket_cap_mb`: None
253
+ - `ddp_broadcast_buffers`: False
254
+ - `dataloader_pin_memory`: True
255
+ - `dataloader_persistent_workers`: False
256
+ - `skip_memory_metrics`: True
257
+ - `use_legacy_prediction_loop`: False
258
+ - `push_to_hub`: False
259
+ - `resume_from_checkpoint`: None
260
+ - `hub_model_id`: None
261
+ - `hub_strategy`: every_save
262
+ - `hub_private_repo`: False
263
+ - `hub_always_push`: False
264
+ - `gradient_checkpointing`: False
265
+ - `gradient_checkpointing_kwargs`: None
266
+ - `include_inputs_for_metrics`: False
267
+ - `eval_do_concat_batches`: True
268
+ - `fp16_backend`: auto
269
+ - `push_to_hub_model_id`: None
270
+ - `push_to_hub_organization`: None
271
+ - `mp_parameters`:
272
+ - `auto_find_batch_size`: False
273
+ - `full_determinism`: False
274
+ - `torchdynamo`: None
275
+ - `ray_scope`: last
276
+ - `ddp_timeout`: 1800
277
+ - `torch_compile`: False
278
+ - `torch_compile_backend`: None
279
+ - `torch_compile_mode`: None
280
+ - `dispatch_batches`: None
281
+ - `split_batches`: None
282
+ - `include_tokens_per_second`: False
283
+ - `include_num_input_tokens_seen`: False
284
+ - `neftune_noise_alpha`: None
285
+ - `optim_target_modules`: None
286
+ - `batch_eval_metrics`: False
287
+ - `eval_on_start`: False
288
+ - `eval_use_gather_object`: False
289
+ - `batch_sampler`: batch_sampler
290
+ - `multi_dataset_batch_sampler`: round_robin
291
+
292
+ </details>
293
+
294
+ ### Training Logs
295
+ | Epoch | Step | Training Loss |
296
+ |:------:|:-----:|:-------------:|
297
+ | 0.2126 | 500 | 6.2141 |
298
+ | 0.4252 | 1000 | 5.3697 |
299
+ | 0.6378 | 1500 | 5.2046 |
300
+ | 0.8503 | 2000 | 5.1007 |
301
+ | 1.0629 | 2500 | 4.9564 |
302
+ | 1.2755 | 3000 | 4.8524 |
303
+ | 1.4881 | 3500 | 4.7941 |
304
+ | 1.7007 | 4000 | 4.7099 |
305
+ | 1.9133 | 4500 | 4.6723 |
306
+ | 2.1259 | 5000 | 4.5816 |
307
+ | 2.3384 | 5500 | 4.5275 |
308
+ | 2.5510 | 6000 | 4.527 |
309
+ | 2.7636 | 6500 | 4.4588 |
310
+ | 2.9762 | 7000 | 4.4253 |
311
+ | 3.1888 | 7500 | 4.3234 |
312
+ | 3.4014 | 8000 | 4.3147 |
313
+ | 3.6139 | 8500 | 4.2644 |
314
+ | 3.8265 | 9000 | 4.256 |
315
+ | 4.0391 | 9500 | 4.1724 |
316
+ | 4.2517 | 10000 | 4.1406 |
317
+ | 4.4643 | 10500 | 4.0917 |
318
+ | 4.6769 | 11000 | 4.1334 |
319
+ | 4.8895 | 11500 | 4.0791 |
320
+ | 5.1020 | 12000 | 4.0217 |
321
+ | 5.3146 | 12500 | 3.9745 |
322
+ | 5.5272 | 13000 | 3.9575 |
323
+ | 5.7398 | 13500 | 3.942 |
324
+ | 5.9524 | 14000 | 3.9029 |
325
+ | 6.1650 | 14500 | 3.8617 |
326
+ | 6.3776 | 15000 | 3.8648 |
327
+ | 6.5901 | 15500 | 3.7995 |
328
+ | 6.8027 | 16000 | 3.83 |
329
+ | 7.0153 | 16500 | 3.734 |
330
+ | 7.2279 | 17000 | 3.7528 |
331
+ | 7.4405 | 17500 | 3.634 |
332
+ | 7.6531 | 18000 | 3.7306 |
333
+ | 7.8656 | 18500 | 3.7076 |
334
+ | 8.0782 | 19000 | 3.6494 |
335
+ | 8.2908 | 19500 | 3.664 |
336
+ | 8.5034 | 20000 | 3.5254 |
337
+ | 8.7160 | 20500 | 3.5624 |
338
+ | 8.9286 | 21000 | 3.5812 |
339
+ | 9.1412 | 21500 | 3.566 |
340
+ | 9.3537 | 22000 | 3.3967 |
341
+ | 9.5663 | 22500 | 3.474 |
342
+ | 9.7789 | 23000 | 3.5136 |
343
+ | 9.9915 | 23500 | 3.4518 |
344
+
345
+
346
+ ### Framework Versions
347
+ - Python: 3.10.12
348
+ - Sentence Transformers: 3.0.1
349
+ - Transformers: 4.44.2
350
+ - PyTorch: 2.2.2+cu121
351
+ - Accelerate: 0.34.2
352
+ - Datasets: 2.21.0
353
+ - Tokenizers: 0.19.1
354
+
355
+ ## Citation
356
+
357
+ ### BibTeX
358
+
359
+ #### Sentence Transformers
360
+ ```bibtex
361
+ @inproceedings{reimers-2019-sentence-bert,
362
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
363
+ author = "Reimers, Nils and Gurevych, Iryna",
364
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
365
+ month = "11",
366
+ year = "2019",
367
+ publisher = "Association for Computational Linguistics",
368
+ url = "https://arxiv.org/abs/1908.10084",
369
+ }
370
+ ```
371
+
372
+ #### CoSENTLoss
373
+ ```bibtex
374
+ @online{kexuefm-8847,
375
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
376
+ author={Su Jianlin},
377
+ year={2022},
378
+ month={Jan},
379
+ url={https://kexue.fm/archives/8847},
380
+ }
381
+ ```
382
+
383
+ <!--
384
+ ## Glossary
385
+
386
+ *Clearly define terms in order to be accessible across audiences.*
387
+ -->
388
+
389
+ <!--
390
+ ## Model Card Authors
391
+
392
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
393
+ -->
394
+
395
+ <!--
396
+ ## Model Card Contact
397
+
398
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
399
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-MiniLM-L6-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.0.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.2+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b445ad7ac85476bc305141b366ecd842f76fe76d457d9c7822c59f65c3489c1f
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 128,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff