Upload GPT
Browse files- README.md +199 -0
- adapter_v2.py +418 -0
- config.json +46 -0
- model-00001-of-00006.safetensors +3 -0
- model-00002-of-00006.safetensors +3 -0
- model-00003-of-00006.safetensors +3 -0
- model-00004-of-00006.safetensors +3 -0
- model-00005-of-00006.safetensors +3 -0
- model-00006-of-00006.safetensors +3 -0
- model.safetensors.index.json +490 -0
README.md
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: transformers
|
3 |
+
tags: []
|
4 |
+
---
|
5 |
+
|
6 |
+
# Model Card for Model ID
|
7 |
+
|
8 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
## Model Details
|
13 |
+
|
14 |
+
### Model Description
|
15 |
+
|
16 |
+
<!-- Provide a longer summary of what this model is. -->
|
17 |
+
|
18 |
+
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
19 |
+
|
20 |
+
- **Developed by:** [More Information Needed]
|
21 |
+
- **Funded by [optional]:** [More Information Needed]
|
22 |
+
- **Shared by [optional]:** [More Information Needed]
|
23 |
+
- **Model type:** [More Information Needed]
|
24 |
+
- **Language(s) (NLP):** [More Information Needed]
|
25 |
+
- **License:** [More Information Needed]
|
26 |
+
- **Finetuned from model [optional]:** [More Information Needed]
|
27 |
+
|
28 |
+
### Model Sources [optional]
|
29 |
+
|
30 |
+
<!-- Provide the basic links for the model. -->
|
31 |
+
|
32 |
+
- **Repository:** [More Information Needed]
|
33 |
+
- **Paper [optional]:** [More Information Needed]
|
34 |
+
- **Demo [optional]:** [More Information Needed]
|
35 |
+
|
36 |
+
## Uses
|
37 |
+
|
38 |
+
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
39 |
+
|
40 |
+
### Direct Use
|
41 |
+
|
42 |
+
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
43 |
+
|
44 |
+
[More Information Needed]
|
45 |
+
|
46 |
+
### Downstream Use [optional]
|
47 |
+
|
48 |
+
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
49 |
+
|
50 |
+
[More Information Needed]
|
51 |
+
|
52 |
+
### Out-of-Scope Use
|
53 |
+
|
54 |
+
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
|
55 |
+
|
56 |
+
[More Information Needed]
|
57 |
+
|
58 |
+
## Bias, Risks, and Limitations
|
59 |
+
|
60 |
+
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
61 |
+
|
62 |
+
[More Information Needed]
|
63 |
+
|
64 |
+
### Recommendations
|
65 |
+
|
66 |
+
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
67 |
+
|
68 |
+
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
69 |
+
|
70 |
+
## How to Get Started with the Model
|
71 |
+
|
72 |
+
Use the code below to get started with the model.
|
73 |
+
|
74 |
+
[More Information Needed]
|
75 |
+
|
76 |
+
## Training Details
|
77 |
+
|
78 |
+
### Training Data
|
79 |
+
|
80 |
+
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
+
|
82 |
+
[More Information Needed]
|
83 |
+
|
84 |
+
### Training Procedure
|
85 |
+
|
86 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
87 |
+
|
88 |
+
#### Preprocessing [optional]
|
89 |
+
|
90 |
+
[More Information Needed]
|
91 |
+
|
92 |
+
|
93 |
+
#### Training Hyperparameters
|
94 |
+
|
95 |
+
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
+
|
97 |
+
#### Speeds, Sizes, Times [optional]
|
98 |
+
|
99 |
+
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
+
|
101 |
+
[More Information Needed]
|
102 |
+
|
103 |
+
## Evaluation
|
104 |
+
|
105 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
+
|
107 |
+
### Testing Data, Factors & Metrics
|
108 |
+
|
109 |
+
#### Testing Data
|
110 |
+
|
111 |
+
<!-- This should link to a Dataset Card if possible. -->
|
112 |
+
|
113 |
+
[More Information Needed]
|
114 |
+
|
115 |
+
#### Factors
|
116 |
+
|
117 |
+
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
+
|
119 |
+
[More Information Needed]
|
120 |
+
|
121 |
+
#### Metrics
|
122 |
+
|
123 |
+
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
+
|
125 |
+
[More Information Needed]
|
126 |
+
|
127 |
+
### Results
|
128 |
+
|
129 |
+
[More Information Needed]
|
130 |
+
|
131 |
+
#### Summary
|
132 |
+
|
133 |
+
|
134 |
+
|
135 |
+
## Model Examination [optional]
|
136 |
+
|
137 |
+
<!-- Relevant interpretability work for the model goes here -->
|
138 |
+
|
139 |
+
[More Information Needed]
|
140 |
+
|
141 |
+
## Environmental Impact
|
142 |
+
|
143 |
+
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
+
|
145 |
+
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
+
|
147 |
+
- **Hardware Type:** [More Information Needed]
|
148 |
+
- **Hours used:** [More Information Needed]
|
149 |
+
- **Cloud Provider:** [More Information Needed]
|
150 |
+
- **Compute Region:** [More Information Needed]
|
151 |
+
- **Carbon Emitted:** [More Information Needed]
|
152 |
+
|
153 |
+
## Technical Specifications [optional]
|
154 |
+
|
155 |
+
### Model Architecture and Objective
|
156 |
+
|
157 |
+
[More Information Needed]
|
158 |
+
|
159 |
+
### Compute Infrastructure
|
160 |
+
|
161 |
+
[More Information Needed]
|
162 |
+
|
163 |
+
#### Hardware
|
164 |
+
|
165 |
+
[More Information Needed]
|
166 |
+
|
167 |
+
#### Software
|
168 |
+
|
169 |
+
[More Information Needed]
|
170 |
+
|
171 |
+
## Citation [optional]
|
172 |
+
|
173 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
+
|
175 |
+
**BibTeX:**
|
176 |
+
|
177 |
+
[More Information Needed]
|
178 |
+
|
179 |
+
**APA:**
|
180 |
+
|
181 |
+
[More Information Needed]
|
182 |
+
|
183 |
+
## Glossary [optional]
|
184 |
+
|
185 |
+
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
+
|
187 |
+
[More Information Needed]
|
188 |
+
|
189 |
+
## More Information [optional]
|
190 |
+
|
191 |
+
[More Information Needed]
|
192 |
+
|
193 |
+
## Model Card Authors [optional]
|
194 |
+
|
195 |
+
[More Information Needed]
|
196 |
+
|
197 |
+
## Model Card Contact
|
198 |
+
|
199 |
+
[More Information Needed]
|
adapter_v2.py
ADDED
@@ -0,0 +1,418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright Lightning AI. Licensed under the Apache License 2.0, see LICENSE file.
|
2 |
+
|
3 |
+
"""Implementation of the paper:
|
4 |
+
|
5 |
+
LLaMA-Adapter V2: Parameter-Efficient Visual Instruction Model
|
6 |
+
https://arxiv.org/abs/2304.15010
|
7 |
+
|
8 |
+
Port for LitGPT
|
9 |
+
"""
|
10 |
+
|
11 |
+
from dataclasses import dataclass
|
12 |
+
from typing import Any, Dict, List, Optional, Tuple, Type, Union
|
13 |
+
|
14 |
+
import torch
|
15 |
+
import torch.nn as nn
|
16 |
+
from typing_extensions import Self
|
17 |
+
|
18 |
+
import litgpt
|
19 |
+
from litgpt.adapter import GPT as BaseModel
|
20 |
+
from litgpt.adapter import Block as BaseBlock
|
21 |
+
from litgpt.adapter import CausalSelfAttention as BaseCausalSelfAttention
|
22 |
+
from litgpt.adapter import Config as BaseConfig
|
23 |
+
from litgpt.model import KVCache
|
24 |
+
from litgpt.utils import map_old_state_dict_weights
|
25 |
+
from litgpt.model import KVCache, apply_rope
|
26 |
+
from litgpt.smoe import AdapterV2SMoE
|
27 |
+
|
28 |
+
from transformers import PreTrainedModel
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class Config(BaseConfig):
|
32 |
+
@property
|
33 |
+
def mlp_class(self) -> Type:
|
34 |
+
return getattr(litgpt.adapter_v2, self.mlp_class_name)
|
35 |
+
|
36 |
+
@dataclass
|
37 |
+
class ConfigSMOE(BaseConfig):
|
38 |
+
use_smoe: bool=False
|
39 |
+
num_experts: int=4
|
40 |
+
top_k: int=1
|
41 |
+
alpha: int=0
|
42 |
+
model_type: str = "gpt"
|
43 |
+
def __init__(self, *args, **kwargs):
|
44 |
+
super(ConfigSMOE, self).__init__(*args, **kwargs)
|
45 |
+
|
46 |
+
@property
|
47 |
+
def mlp_class(self) -> Type:
|
48 |
+
return getattr(litgpt.adapter_v2, self.mlp_class_name)
|
49 |
+
def load_extra(self, extra_config):
|
50 |
+
for k in list(extra_config.keys()):
|
51 |
+
setattr(self, k, extra_config[k])
|
52 |
+
|
53 |
+
def adapter_filter(key: str, value: Any) -> bool:
|
54 |
+
|
55 |
+
adapter_substrings = (
|
56 |
+
# regular adapter v1 parameters
|
57 |
+
"adapter_wte",
|
58 |
+
"gating_factor",
|
59 |
+
# adapter v2: new bias and scale used in Linear
|
60 |
+
"adapter_scale",
|
61 |
+
"adapter_bias",
|
62 |
+
# adapter v2: Norm parameters are now trainable
|
63 |
+
"norm_1",
|
64 |
+
"norm_2",
|
65 |
+
"ln_f",
|
66 |
+
# smoe: gating mechanism
|
67 |
+
"gate",
|
68 |
+
)
|
69 |
+
return any(s in key for s in adapter_substrings)
|
70 |
+
|
71 |
+
|
72 |
+
class AdapterV2Linear(torch.nn.Module):
|
73 |
+
def __init__(self, in_features: int, out_features: int, **kwargs) -> None:
|
74 |
+
super().__init__()
|
75 |
+
self.linear = torch.nn.Linear(in_features, out_features, **kwargs)
|
76 |
+
self.adapter_bias = torch.nn.Parameter(torch.zeros(out_features), requires_grad=False)
|
77 |
+
self.adapter_scale = torch.nn.Parameter(torch.ones(out_features), requires_grad=False)
|
78 |
+
|
79 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
80 |
+
# breakpoint()
|
81 |
+
return self.adapter_scale * (self.linear(x) + self.adapter_bias)
|
82 |
+
|
83 |
+
def reset_parameters(self) -> None:
|
84 |
+
nn.init.zeros_(self.adapter_bias)
|
85 |
+
nn.init.ones_(self.adapter_scale)
|
86 |
+
|
87 |
+
class GPT(BaseModel, PreTrainedModel):
|
88 |
+
config_class=ConfigSMOE
|
89 |
+
|
90 |
+
def __init__(self, config: ConfigSMOE) -> None:
|
91 |
+
# Skip the parent class __init__ altogether and replace it to avoid useless allocations
|
92 |
+
nn.Module.__init__(self)
|
93 |
+
# super().__init__(config)
|
94 |
+
assert config.padded_vocab_size is not None
|
95 |
+
self.config = config
|
96 |
+
if config.use_smoe:
|
97 |
+
print("🐙 Run AdapterV2SMoE")
|
98 |
+
self.lm_head = AdapterV2SMoE(
|
99 |
+
in_features=config.n_embd,
|
100 |
+
out_features=config.padded_vocab_size,
|
101 |
+
num_experts=config.num_experts,
|
102 |
+
top_k=config.top_k,
|
103 |
+
bias=config.lm_head_bias
|
104 |
+
)
|
105 |
+
self.transformer = nn.ModuleDict(
|
106 |
+
dict(
|
107 |
+
wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
|
108 |
+
h=nn.ModuleList(BlockSMoE(config, i) for i in range(config.n_layer)),
|
109 |
+
ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
|
110 |
+
)
|
111 |
+
)
|
112 |
+
else:
|
113 |
+
print("🐙 Run AdapterV2Linear")
|
114 |
+
self.lm_head = AdapterV2Linear(config.n_embd, config.padded_vocab_size, bias=config.lm_head_bias)
|
115 |
+
self.transformer = nn.ModuleDict(
|
116 |
+
dict(
|
117 |
+
wte=nn.Embedding(config.padded_vocab_size, config.n_embd),
|
118 |
+
h=nn.ModuleList(Block(config, i) for i in range(config.n_layer)),
|
119 |
+
ln_f=config.norm_class(config.n_embd, eps=config.norm_eps),
|
120 |
+
)
|
121 |
+
)
|
122 |
+
self.max_seq_length = self.config.block_size
|
123 |
+
self.mask_cache: Optional[torch.Tensor] = None
|
124 |
+
|
125 |
+
def forward(
|
126 |
+
self, idx: torch.Tensor, input_pos: Optional[torch.Tensor] = None, lm_head_chunk_size: int = 0
|
127 |
+
) -> Union[torch.Tensor, List[torch.Tensor]]:
|
128 |
+
T = idx.size(1)
|
129 |
+
if self.max_seq_length < T:
|
130 |
+
raise ValueError(f"Cannot forward sequence of length {T}, max seq length is only {self.max_seq_length}.")
|
131 |
+
|
132 |
+
if input_pos is not None: # use the kv cache
|
133 |
+
cos = self.cos.index_select(0, input_pos)
|
134 |
+
sin = self.sin.index_select(0, input_pos)
|
135 |
+
if self.mask_cache is None:
|
136 |
+
raise TypeError("You need to call `gpt.set_kv_cache()`")
|
137 |
+
mask = self.mask_cache.index_select(2, input_pos)
|
138 |
+
else:
|
139 |
+
cos = self.cos[:T]
|
140 |
+
sin = self.sin[:T]
|
141 |
+
mask = None
|
142 |
+
|
143 |
+
x = self.transformer.wte(idx) # token embeddings of shape (b, t, n_embd)
|
144 |
+
if self.config.scale_embeddings:
|
145 |
+
x = x * (self.config.n_embd**0.5)
|
146 |
+
for block in self.transformer.h:
|
147 |
+
x = block(x, cos, sin, mask, input_pos)
|
148 |
+
x = self.transformer.ln_f(x)
|
149 |
+
if self.config.use_smoe:
|
150 |
+
if lm_head_chunk_size > 0:
|
151 |
+
outputs = []
|
152 |
+
routers = []
|
153 |
+
for x_i in x.split(lm_head_chunk_size, dim = 1):
|
154 |
+
output, router = self.lm_head(x_i)
|
155 |
+
outputs.append(output)
|
156 |
+
routers.append(router)
|
157 |
+
return outputs, routers
|
158 |
+
output, router = self.lm_head(x)
|
159 |
+
return output, router #(b, t, vocab_size)
|
160 |
+
else:
|
161 |
+
if lm_head_chunk_size > 0:
|
162 |
+
# chunk the lm head logits to reduce the peak memory used by autograd
|
163 |
+
return [self.lm_head(x_i) for x_i in x.split(lm_head_chunk_size, dim=1)]
|
164 |
+
return self.lm_head(x) # (b, t, vocab_size)
|
165 |
+
|
166 |
+
@classmethod
|
167 |
+
def from_name(cls, name: str, **kwargs: Any) -> Self:
|
168 |
+
return cls(Config.from_name(name, **kwargs))
|
169 |
+
|
170 |
+
def _init_weights(self, module: nn.Module) -> None:
|
171 |
+
"""Meant to be used with `gpt.apply(gpt._init_weights)`. Unused method left for completeness."""
|
172 |
+
super()._init_weights(module)
|
173 |
+
if isinstance(module, AdapterV2Linear):
|
174 |
+
module.reset_parameters()
|
175 |
+
|
176 |
+
def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
|
177 |
+
"""For compatibility with base checkpoints."""
|
178 |
+
mapping = {"lm_head.weight": "lm_head.linear.weight", "lm_head.bias": "lm_head.linear.bias"}
|
179 |
+
state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
|
180 |
+
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
|
181 |
+
|
182 |
+
|
183 |
+
class Block(BaseBlock):
|
184 |
+
"""The implementation is identical to `litgpt.model.Block` with the exception that
|
185 |
+
we replace the attention layer where adaption is implemented."""
|
186 |
+
|
187 |
+
def __init__(self, config: Config, block_idx: int) -> None:
|
188 |
+
# Skip the parent class __init__ altogether and replace it to avoid useless allocations
|
189 |
+
nn.Module.__init__(self)
|
190 |
+
self.norm_1 = config.norm_class(config.n_embd, eps=config.norm_eps)
|
191 |
+
if config.use_smoe:
|
192 |
+
self.attn = CausalSelfAttentionSMoE(config, block_idx)
|
193 |
+
else:
|
194 |
+
self.attn = CausalSelfAttention(config, block_idx)
|
195 |
+
if not config.shared_attention_norm:
|
196 |
+
self.norm_2 = config.norm_class(config.n_embd, eps=config.norm_eps)
|
197 |
+
self.mlp = config.mlp_class(config)
|
198 |
+
|
199 |
+
self.config = config
|
200 |
+
|
201 |
+
class BlockSMoE(Block):
|
202 |
+
def forward(
|
203 |
+
self,
|
204 |
+
x: torch.Tensor,
|
205 |
+
cos: torch.Tensor,
|
206 |
+
sin: torch.Tensor,
|
207 |
+
mask: Optional[torch.Tensor] = None,
|
208 |
+
input_pos: Optional[torch.Tensor] = None,
|
209 |
+
) -> torch.Tensor:
|
210 |
+
x_normed = self.norm_1(x)
|
211 |
+
attention_output, _ = self.attn(x_normed, cos, sin, mask, input_pos)
|
212 |
+
if self.config.parallel_residual:
|
213 |
+
x_normed = x_normed if self.config.shared_attention_norm else self.norm_2(x)
|
214 |
+
x = self.mlp(x_normed) + attention_output + x
|
215 |
+
else:
|
216 |
+
x = attention_output + x
|
217 |
+
x = self.mlp(self.norm_2(x)) + x
|
218 |
+
return x
|
219 |
+
|
220 |
+
|
221 |
+
class CausalSelfAttention(BaseCausalSelfAttention):
|
222 |
+
"""A modification of `litgpt.adapter.CausalSelfAttention` that uses the Adapter V2 Linear class"""
|
223 |
+
|
224 |
+
def __init__(self, config: Config, block_idx: int) -> None:
|
225 |
+
# Skip the parent class __init__ altogether and replace it to avoid useless allocations
|
226 |
+
nn.Module.__init__(self)
|
227 |
+
shape = (config.n_head + 2 * config.n_query_groups) * config.head_size
|
228 |
+
# key, query, value projections for all heads, but in a batch
|
229 |
+
if config.use_smoe:
|
230 |
+
self.attn = AdapterV2SMoE(
|
231 |
+
in_features=config.n_embd,
|
232 |
+
out_features=shape,
|
233 |
+
num_experts=config.num_experts,
|
234 |
+
top_k=config.top_k,
|
235 |
+
bias=config.bias
|
236 |
+
)
|
237 |
+
# output projection
|
238 |
+
# if `head_size` is explicitly specified in the config, `n_emd` might not be equal to `head_size * n_head`
|
239 |
+
self.proj = AdapterV2SMoE(
|
240 |
+
in_features=config.head_size * config.n_head,
|
241 |
+
out_features=config.n_embd,
|
242 |
+
num_experts=config.num_experts,
|
243 |
+
top_k=config.top_k,
|
244 |
+
bias=config.bias
|
245 |
+
)
|
246 |
+
# disabled by default
|
247 |
+
else:
|
248 |
+
self.attn = AdapterV2Linear(in_features=config.n_embd, out_features=shape, bias=config.bias)
|
249 |
+
# output projection
|
250 |
+
# if `head_size` is explicitly specified in the config, `n_emd` might not be equal to `head_size * n_head`
|
251 |
+
self.proj = AdapterV2Linear(config.head_size * config.n_head, config.n_embd, bias=config.bias)
|
252 |
+
# disabled by default
|
253 |
+
self.kv_cache: Optional[KVCache] = None
|
254 |
+
|
255 |
+
if block_idx >= config.adapter_start_layer:
|
256 |
+
# adapter embedding layer
|
257 |
+
self.adapter_wte = nn.Embedding(config.adapter_prompt_length, config.n_embd)
|
258 |
+
# gate for adaption
|
259 |
+
self.gating_factor = torch.nn.Parameter(torch.zeros(1, 1, config.n_head, 1))
|
260 |
+
# kv cache for inference
|
261 |
+
self.adapter_kv_cache: Optional[Tuple[torch.Tensor, torch.Tensor]] = None
|
262 |
+
self.block_idx = block_idx
|
263 |
+
|
264 |
+
self.config = config
|
265 |
+
|
266 |
+
def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
|
267 |
+
"""For compatibility with base checkpoints."""
|
268 |
+
mapping = {
|
269 |
+
"attn.weight": "attn.linear.weight",
|
270 |
+
"attn.bias": "attn.linear.bias",
|
271 |
+
"proj.weight": "proj.linear.weight",
|
272 |
+
"proj.bias": "proj.linear.bias",
|
273 |
+
}
|
274 |
+
state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
|
275 |
+
# For compatibility with older checkpoints
|
276 |
+
if (key := prefix + "gating_factor") in state_dict and state_dict[key].size(1) == self.config.n_head:
|
277 |
+
state_dict[key] = state_dict[key].permute(0, 2, 1, 3)
|
278 |
+
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
|
279 |
+
|
280 |
+
class CausalSelfAttentionSMoE(CausalSelfAttention):
|
281 |
+
def forward(
|
282 |
+
self,
|
283 |
+
x: torch.Tensor,
|
284 |
+
cos: torch.Tensor,
|
285 |
+
sin: torch.Tensor,
|
286 |
+
mask: Optional[torch.Tensor] = None,
|
287 |
+
input_pos: Optional[torch.Tensor] = None,
|
288 |
+
) -> torch.Tensor:
|
289 |
+
B, T, C = x.size() # batch size, sequence length, embedding dimensionality (n_embd)
|
290 |
+
|
291 |
+
# breakpoint()
|
292 |
+
qkv, _ = self.attn(x)
|
293 |
+
|
294 |
+
# assemble into a number of query groups to support MHA, MQA and GQA together (see `config.n_query_groups`)
|
295 |
+
q_per_kv = self.config.n_head // self.config.n_query_groups
|
296 |
+
total_qkv = q_per_kv + 2 # each group has 1+ queries, 1 key, and 1 value
|
297 |
+
qkv = qkv.view(B, T, self.config.n_query_groups, total_qkv, self.config.head_size)
|
298 |
+
qkv = qkv.permute(0, 2, 3, 1, 4) # (B, n_query_groups, total_qkv, T, hs)
|
299 |
+
|
300 |
+
# split batched computation into three
|
301 |
+
q, k, v = qkv.split((q_per_kv, 1, 1), dim=2)
|
302 |
+
|
303 |
+
# maybe repeat k and v if for the non multi-head attention cases
|
304 |
+
# training: flash attention requires it
|
305 |
+
# inference: multi-query would require a full kv cache so avoid it to limit its memory usage
|
306 |
+
if self.config.n_query_groups != self.config.n_head and (input_pos is None or self.config.n_query_groups != 1):
|
307 |
+
k = k.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size)
|
308 |
+
v = v.expand(B, self.config.n_query_groups, q_per_kv, T, self.config.head_size)
|
309 |
+
|
310 |
+
q = q.reshape(B, -1, T, self.config.head_size) # (B, nh_q, T, hs)
|
311 |
+
k = k.reshape(B, -1, T, self.config.head_size) # (B, nh_k, T, hs)
|
312 |
+
v = v.reshape(B, -1, T, self.config.head_size) # (B, nh_v, T, hs)
|
313 |
+
|
314 |
+
q_roped = apply_rope(q[..., : self.config.rope_n_elem], cos, sin)
|
315 |
+
k_roped = apply_rope(k[..., : self.config.rope_n_elem], cos, sin)
|
316 |
+
q = torch.cat((q_roped, q[..., self.config.rope_n_elem :]), dim=-1)
|
317 |
+
k = torch.cat((k_roped, k[..., self.config.rope_n_elem :]), dim=-1)
|
318 |
+
|
319 |
+
if input_pos is not None:
|
320 |
+
if not isinstance(self.kv_cache, KVCache):
|
321 |
+
raise TypeError("You need to call `gpt.set_kv_cache()`")
|
322 |
+
k, v = self.kv_cache(input_pos, k, v)
|
323 |
+
|
324 |
+
y = self.scaled_dot_product_attention(q, k, v, mask)
|
325 |
+
|
326 |
+
y = y.reshape(B, T, self.config.head_size * self.config.n_head) # re-assemble all head outputs side by side
|
327 |
+
|
328 |
+
# output projection
|
329 |
+
return self.proj(y)
|
330 |
+
|
331 |
+
class GptNeoxMLP(litgpt.model.GptNeoxMLP):
|
332 |
+
def __init__(self, config: Config) -> None:
|
333 |
+
nn.Module.__init__(self)
|
334 |
+
if config.use_smoe:
|
335 |
+
self.fc = AdapterV2SMoE(
|
336 |
+
in_features=config.n_embd,
|
337 |
+
out_features=config.intermediate_size,
|
338 |
+
num_experts=config.num_experts,
|
339 |
+
top_k=config.top_k,
|
340 |
+
bias=config.bias
|
341 |
+
)
|
342 |
+
# output projection
|
343 |
+
# if `head_size` is explicitly specified in the config, `n_emd` might not be equal to `head_size * n_head`
|
344 |
+
self.proj = AdapterV2SMoE(
|
345 |
+
in_features=config.intermediate_size,
|
346 |
+
out_features=config.n_embd,
|
347 |
+
num_experts=config.num_experts,
|
348 |
+
top_k=config.top_k,
|
349 |
+
bias=config.bias
|
350 |
+
)
|
351 |
+
else:
|
352 |
+
self.fc = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
|
353 |
+
self.proj = AdapterV2Linear(config.intermediate_size, config.n_embd, bias=config.bias)
|
354 |
+
|
355 |
+
self.config = config
|
356 |
+
|
357 |
+
def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
|
358 |
+
"""For compatibility with base checkpoints."""
|
359 |
+
mapping = {
|
360 |
+
"fc.weight": "fc.linear.weight",
|
361 |
+
"fc.bias": "fc.linear.bias",
|
362 |
+
"proj.weight": "proj.linear.weight",
|
363 |
+
"proj.bias": "proj.linear.bias",
|
364 |
+
}
|
365 |
+
state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
|
366 |
+
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
|
367 |
+
|
368 |
+
|
369 |
+
class LLaMAMLP(litgpt.model.LLaMAMLP):
|
370 |
+
def __init__(self, config: Config) -> None:
|
371 |
+
nn.Module.__init__(self)
|
372 |
+
self.fc_1 = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
|
373 |
+
self.fc_2 = AdapterV2Linear(config.n_embd, config.intermediate_size, bias=config.bias)
|
374 |
+
self.proj = AdapterV2Linear(config.intermediate_size, config.n_embd, bias=config.bias)
|
375 |
+
|
376 |
+
self.config = config
|
377 |
+
|
378 |
+
def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
|
379 |
+
"""For compatibility with base checkpoints."""
|
380 |
+
mapping = {
|
381 |
+
"fc_1.weight": "fc_1.linear.weight",
|
382 |
+
"fc_1.bias": "fc_1.linear.bias",
|
383 |
+
"fc_2.weight": "fc_2.linear.weight",
|
384 |
+
"fc_2.bias": "fc_2.linear.bias",
|
385 |
+
"proj.weight": "proj.linear.weight",
|
386 |
+
"proj.bias": "proj.linear.bias",
|
387 |
+
}
|
388 |
+
state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
|
389 |
+
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
|
390 |
+
|
391 |
+
|
392 |
+
class GemmaMLP(LLaMAMLP):
|
393 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
394 |
+
x_fc_1 = self.fc_1(x)
|
395 |
+
x_fc_2 = self.fc_2(x)
|
396 |
+
x = torch.nn.functional.gelu(x_fc_1, approximate=self.config.gelu_approximate) * x_fc_2
|
397 |
+
return self.proj(x)
|
398 |
+
|
399 |
+
|
400 |
+
class LLaMAMoE(litgpt.model.LLaMAMoE):
|
401 |
+
def __init__(self, config: Config) -> None:
|
402 |
+
nn.Module.__init__(self)
|
403 |
+
self.gate = AdapterV2Linear(config.n_embd, config.n_expert, bias=False)
|
404 |
+
self.experts = nn.ModuleList(LLaMAMLP(config) for _ in range(config.n_expert))
|
405 |
+
|
406 |
+
self.config = config
|
407 |
+
|
408 |
+
def _load_from_state_dict(self, state_dict: Dict, prefix: str, *args: Any, **kwargs: Any) -> None:
|
409 |
+
"""For compatibility with base checkpoints."""
|
410 |
+
mapping = {"gate.weight": "gate.linear.weight"}
|
411 |
+
state_dict = map_old_state_dict_weights(state_dict, mapping, prefix)
|
412 |
+
super()._load_from_state_dict(state_dict, prefix, *args, **kwargs)
|
413 |
+
|
414 |
+
|
415 |
+
def mark_only_adapter_v2_as_trainable(model: GPT) -> None:
|
416 |
+
"""Sets requires_grad=False for all non-adapter weights"""
|
417 |
+
for name, param in model.named_parameters():
|
418 |
+
param.requires_grad = adapter_filter(name, param)
|
config.json
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"alpha": 0,
|
3 |
+
"architectures": [
|
4 |
+
"GPT"
|
5 |
+
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "adapter_v2.ConfigSMOE",
|
8 |
+
"AutoModelForCausalLM": "adapter_v2.GPT"
|
9 |
+
},
|
10 |
+
"bias": true,
|
11 |
+
"block_size": 2048,
|
12 |
+
"gelu_approximate": "tanh",
|
13 |
+
"head_size": 64,
|
14 |
+
"hf_config": {
|
15 |
+
"name": "phi-1_5",
|
16 |
+
"org": "microsoft"
|
17 |
+
},
|
18 |
+
"intermediate_size": 8192,
|
19 |
+
"lm_head_bias": true,
|
20 |
+
"mlp_class_name": "GptNeoxMLP",
|
21 |
+
"model_type": "gpt",
|
22 |
+
"n_embd": 2048,
|
23 |
+
"n_expert": 0,
|
24 |
+
"n_expert_per_token": 0,
|
25 |
+
"n_head": 32,
|
26 |
+
"n_layer": 24,
|
27 |
+
"n_query_groups": 32,
|
28 |
+
"name": "phi-1_5",
|
29 |
+
"norm_class_name": "LayerNorm",
|
30 |
+
"norm_eps": 1e-05,
|
31 |
+
"num_experts": 4,
|
32 |
+
"padded_vocab_size": 51200,
|
33 |
+
"padding_multiple": 512,
|
34 |
+
"parallel_residual": true,
|
35 |
+
"rope_base": 10000,
|
36 |
+
"rope_condense_ratio": 1,
|
37 |
+
"rope_n_elem": 32,
|
38 |
+
"rotary_percentage": 0.5,
|
39 |
+
"scale_embeddings": false,
|
40 |
+
"shared_attention_norm": true,
|
41 |
+
"top_k": 1,
|
42 |
+
"torch_dtype": "float32",
|
43 |
+
"transformers_version": "4.41.2",
|
44 |
+
"use_smoe": false,
|
45 |
+
"vocab_size": 50257
|
46 |
+
}
|
model-00001-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9257c7fe5285b1efee2affb45f72e2a23f667e13dc557b17aed91a2780d80a22
|
3 |
+
size 973924520
|
model-00002-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3b4cbfc9c16bf5fea33a09ae60edce34fae39afd0e2dfbc5a60a680b699bce63
|
3 |
+
size 941001200
|
model-00003-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7429e9ddd1b770fc96bda8c5b77ae66765934912ad2e8517cff870052fb08954
|
3 |
+
size 991308496
|
model-00004-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dddccb48c26c9ff3113064fd8b8744921960f77b517cc0a39dda23a163f02712
|
3 |
+
size 957868952
|
model-00005-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:050a1695ccfe9fe40fadfad1306b47219b76177732e0d7d920083625e01b5f5f
|
3 |
+
size 941058528
|
model-00006-of-00006.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a623b66694dc4ee1075e5903c27e03dbeef8b507470b0f8a14c1177f783aac4
|
3 |
+
size 873727464
|
model.safetensors.index.json
ADDED
@@ -0,0 +1,490 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"metadata": {
|
3 |
+
"total_size": 5678836480
|
4 |
+
},
|
5 |
+
"weight_map": {
|
6 |
+
"lm_head.adapter_bias": "model-00001-of-00006.safetensors",
|
7 |
+
"lm_head.adapter_scale": "model-00001-of-00006.safetensors",
|
8 |
+
"lm_head.linear.bias": "model-00001-of-00006.safetensors",
|
9 |
+
"lm_head.linear.weight": "model-00001-of-00006.safetensors",
|
10 |
+
"transformer.h.0.attn.attn.adapter_bias": "model-00001-of-00006.safetensors",
|
11 |
+
"transformer.h.0.attn.attn.adapter_scale": "model-00001-of-00006.safetensors",
|
12 |
+
"transformer.h.0.attn.attn.linear.bias": "model-00001-of-00006.safetensors",
|
13 |
+
"transformer.h.0.attn.attn.linear.weight": "model-00001-of-00006.safetensors",
|
14 |
+
"transformer.h.0.attn.proj.adapter_bias": "model-00001-of-00006.safetensors",
|
15 |
+
"transformer.h.0.attn.proj.adapter_scale": "model-00001-of-00006.safetensors",
|
16 |
+
"transformer.h.0.attn.proj.linear.bias": "model-00001-of-00006.safetensors",
|
17 |
+
"transformer.h.0.attn.proj.linear.weight": "model-00001-of-00006.safetensors",
|
18 |
+
"transformer.h.0.mlp.fc.adapter_bias": "model-00001-of-00006.safetensors",
|
19 |
+
"transformer.h.0.mlp.fc.adapter_scale": "model-00001-of-00006.safetensors",
|
20 |
+
"transformer.h.0.mlp.fc.linear.bias": "model-00001-of-00006.safetensors",
|
21 |
+
"transformer.h.0.mlp.fc.linear.weight": "model-00001-of-00006.safetensors",
|
22 |
+
"transformer.h.0.mlp.proj.adapter_bias": "model-00001-of-00006.safetensors",
|
23 |
+
"transformer.h.0.mlp.proj.adapter_scale": "model-00001-of-00006.safetensors",
|
24 |
+
"transformer.h.0.mlp.proj.linear.bias": "model-00002-of-00006.safetensors",
|
25 |
+
"transformer.h.0.mlp.proj.linear.weight": "model-00002-of-00006.safetensors",
|
26 |
+
"transformer.h.0.norm_1.bias": "model-00001-of-00006.safetensors",
|
27 |
+
"transformer.h.0.norm_1.weight": "model-00001-of-00006.safetensors",
|
28 |
+
"transformer.h.1.attn.attn.adapter_bias": "model-00002-of-00006.safetensors",
|
29 |
+
"transformer.h.1.attn.attn.adapter_scale": "model-00002-of-00006.safetensors",
|
30 |
+
"transformer.h.1.attn.attn.linear.bias": "model-00002-of-00006.safetensors",
|
31 |
+
"transformer.h.1.attn.attn.linear.weight": "model-00002-of-00006.safetensors",
|
32 |
+
"transformer.h.1.attn.proj.adapter_bias": "model-00002-of-00006.safetensors",
|
33 |
+
"transformer.h.1.attn.proj.adapter_scale": "model-00002-of-00006.safetensors",
|
34 |
+
"transformer.h.1.attn.proj.linear.bias": "model-00002-of-00006.safetensors",
|
35 |
+
"transformer.h.1.attn.proj.linear.weight": "model-00002-of-00006.safetensors",
|
36 |
+
"transformer.h.1.mlp.fc.adapter_bias": "model-00002-of-00006.safetensors",
|
37 |
+
"transformer.h.1.mlp.fc.adapter_scale": "model-00002-of-00006.safetensors",
|
38 |
+
"transformer.h.1.mlp.fc.linear.bias": "model-00002-of-00006.safetensors",
|
39 |
+
"transformer.h.1.mlp.fc.linear.weight": "model-00002-of-00006.safetensors",
|
40 |
+
"transformer.h.1.mlp.proj.adapter_bias": "model-00002-of-00006.safetensors",
|
41 |
+
"transformer.h.1.mlp.proj.adapter_scale": "model-00002-of-00006.safetensors",
|
42 |
+
"transformer.h.1.mlp.proj.linear.bias": "model-00002-of-00006.safetensors",
|
43 |
+
"transformer.h.1.mlp.proj.linear.weight": "model-00002-of-00006.safetensors",
|
44 |
+
"transformer.h.1.norm_1.bias": "model-00002-of-00006.safetensors",
|
45 |
+
"transformer.h.1.norm_1.weight": "model-00002-of-00006.safetensors",
|
46 |
+
"transformer.h.10.attn.adapter_wte.weight": "model-00004-of-00006.safetensors",
|
47 |
+
"transformer.h.10.attn.attn.adapter_bias": "model-00003-of-00006.safetensors",
|
48 |
+
"transformer.h.10.attn.attn.adapter_scale": "model-00003-of-00006.safetensors",
|
49 |
+
"transformer.h.10.attn.attn.linear.bias": "model-00003-of-00006.safetensors",
|
50 |
+
"transformer.h.10.attn.attn.linear.weight": "model-00003-of-00006.safetensors",
|
51 |
+
"transformer.h.10.attn.gating_factor": "model-00003-of-00006.safetensors",
|
52 |
+
"transformer.h.10.attn.proj.adapter_bias": "model-00003-of-00006.safetensors",
|
53 |
+
"transformer.h.10.attn.proj.adapter_scale": "model-00003-of-00006.safetensors",
|
54 |
+
"transformer.h.10.attn.proj.linear.bias": "model-00004-of-00006.safetensors",
|
55 |
+
"transformer.h.10.attn.proj.linear.weight": "model-00004-of-00006.safetensors",
|
56 |
+
"transformer.h.10.mlp.fc.adapter_bias": "model-00004-of-00006.safetensors",
|
57 |
+
"transformer.h.10.mlp.fc.adapter_scale": "model-00004-of-00006.safetensors",
|
58 |
+
"transformer.h.10.mlp.fc.linear.bias": "model-00004-of-00006.safetensors",
|
59 |
+
"transformer.h.10.mlp.fc.linear.weight": "model-00004-of-00006.safetensors",
|
60 |
+
"transformer.h.10.mlp.proj.adapter_bias": "model-00004-of-00006.safetensors",
|
61 |
+
"transformer.h.10.mlp.proj.adapter_scale": "model-00004-of-00006.safetensors",
|
62 |
+
"transformer.h.10.mlp.proj.linear.bias": "model-00004-of-00006.safetensors",
|
63 |
+
"transformer.h.10.mlp.proj.linear.weight": "model-00004-of-00006.safetensors",
|
64 |
+
"transformer.h.10.norm_1.bias": "model-00003-of-00006.safetensors",
|
65 |
+
"transformer.h.10.norm_1.weight": "model-00003-of-00006.safetensors",
|
66 |
+
"transformer.h.11.attn.adapter_wte.weight": "model-00004-of-00006.safetensors",
|
67 |
+
"transformer.h.11.attn.attn.adapter_bias": "model-00004-of-00006.safetensors",
|
68 |
+
"transformer.h.11.attn.attn.adapter_scale": "model-00004-of-00006.safetensors",
|
69 |
+
"transformer.h.11.attn.attn.linear.bias": "model-00004-of-00006.safetensors",
|
70 |
+
"transformer.h.11.attn.attn.linear.weight": "model-00004-of-00006.safetensors",
|
71 |
+
"transformer.h.11.attn.gating_factor": "model-00004-of-00006.safetensors",
|
72 |
+
"transformer.h.11.attn.proj.adapter_bias": "model-00004-of-00006.safetensors",
|
73 |
+
"transformer.h.11.attn.proj.adapter_scale": "model-00004-of-00006.safetensors",
|
74 |
+
"transformer.h.11.attn.proj.linear.bias": "model-00004-of-00006.safetensors",
|
75 |
+
"transformer.h.11.attn.proj.linear.weight": "model-00004-of-00006.safetensors",
|
76 |
+
"transformer.h.11.mlp.fc.adapter_bias": "model-00004-of-00006.safetensors",
|
77 |
+
"transformer.h.11.mlp.fc.adapter_scale": "model-00004-of-00006.safetensors",
|
78 |
+
"transformer.h.11.mlp.fc.linear.bias": "model-00004-of-00006.safetensors",
|
79 |
+
"transformer.h.11.mlp.fc.linear.weight": "model-00004-of-00006.safetensors",
|
80 |
+
"transformer.h.11.mlp.proj.adapter_bias": "model-00004-of-00006.safetensors",
|
81 |
+
"transformer.h.11.mlp.proj.adapter_scale": "model-00004-of-00006.safetensors",
|
82 |
+
"transformer.h.11.mlp.proj.linear.bias": "model-00004-of-00006.safetensors",
|
83 |
+
"transformer.h.11.mlp.proj.linear.weight": "model-00004-of-00006.safetensors",
|
84 |
+
"transformer.h.11.norm_1.bias": "model-00004-of-00006.safetensors",
|
85 |
+
"transformer.h.11.norm_1.weight": "model-00004-of-00006.safetensors",
|
86 |
+
"transformer.h.12.attn.adapter_wte.weight": "model-00004-of-00006.safetensors",
|
87 |
+
"transformer.h.12.attn.attn.adapter_bias": "model-00004-of-00006.safetensors",
|
88 |
+
"transformer.h.12.attn.attn.adapter_scale": "model-00004-of-00006.safetensors",
|
89 |
+
"transformer.h.12.attn.attn.linear.bias": "model-00004-of-00006.safetensors",
|
90 |
+
"transformer.h.12.attn.attn.linear.weight": "model-00004-of-00006.safetensors",
|
91 |
+
"transformer.h.12.attn.gating_factor": "model-00004-of-00006.safetensors",
|
92 |
+
"transformer.h.12.attn.proj.adapter_bias": "model-00004-of-00006.safetensors",
|
93 |
+
"transformer.h.12.attn.proj.adapter_scale": "model-00004-of-00006.safetensors",
|
94 |
+
"transformer.h.12.attn.proj.linear.bias": "model-00004-of-00006.safetensors",
|
95 |
+
"transformer.h.12.attn.proj.linear.weight": "model-00004-of-00006.safetensors",
|
96 |
+
"transformer.h.12.mlp.fc.adapter_bias": "model-00004-of-00006.safetensors",
|
97 |
+
"transformer.h.12.mlp.fc.adapter_scale": "model-00004-of-00006.safetensors",
|
98 |
+
"transformer.h.12.mlp.fc.linear.bias": "model-00004-of-00006.safetensors",
|
99 |
+
"transformer.h.12.mlp.fc.linear.weight": "model-00004-of-00006.safetensors",
|
100 |
+
"transformer.h.12.mlp.proj.adapter_bias": "model-00004-of-00006.safetensors",
|
101 |
+
"transformer.h.12.mlp.proj.adapter_scale": "model-00004-of-00006.safetensors",
|
102 |
+
"transformer.h.12.mlp.proj.linear.bias": "model-00004-of-00006.safetensors",
|
103 |
+
"transformer.h.12.mlp.proj.linear.weight": "model-00004-of-00006.safetensors",
|
104 |
+
"transformer.h.12.norm_1.bias": "model-00004-of-00006.safetensors",
|
105 |
+
"transformer.h.12.norm_1.weight": "model-00004-of-00006.safetensors",
|
106 |
+
"transformer.h.13.attn.adapter_wte.weight": "model-00004-of-00006.safetensors",
|
107 |
+
"transformer.h.13.attn.attn.adapter_bias": "model-00004-of-00006.safetensors",
|
108 |
+
"transformer.h.13.attn.attn.adapter_scale": "model-00004-of-00006.safetensors",
|
109 |
+
"transformer.h.13.attn.attn.linear.bias": "model-00004-of-00006.safetensors",
|
110 |
+
"transformer.h.13.attn.attn.linear.weight": "model-00004-of-00006.safetensors",
|
111 |
+
"transformer.h.13.attn.gating_factor": "model-00004-of-00006.safetensors",
|
112 |
+
"transformer.h.13.attn.proj.adapter_bias": "model-00004-of-00006.safetensors",
|
113 |
+
"transformer.h.13.attn.proj.adapter_scale": "model-00004-of-00006.safetensors",
|
114 |
+
"transformer.h.13.attn.proj.linear.bias": "model-00004-of-00006.safetensors",
|
115 |
+
"transformer.h.13.attn.proj.linear.weight": "model-00004-of-00006.safetensors",
|
116 |
+
"transformer.h.13.mlp.fc.adapter_bias": "model-00004-of-00006.safetensors",
|
117 |
+
"transformer.h.13.mlp.fc.adapter_scale": "model-00004-of-00006.safetensors",
|
118 |
+
"transformer.h.13.mlp.fc.linear.bias": "model-00004-of-00006.safetensors",
|
119 |
+
"transformer.h.13.mlp.fc.linear.weight": "model-00004-of-00006.safetensors",
|
120 |
+
"transformer.h.13.mlp.proj.adapter_bias": "model-00004-of-00006.safetensors",
|
121 |
+
"transformer.h.13.mlp.proj.adapter_scale": "model-00004-of-00006.safetensors",
|
122 |
+
"transformer.h.13.mlp.proj.linear.bias": "model-00004-of-00006.safetensors",
|
123 |
+
"transformer.h.13.mlp.proj.linear.weight": "model-00004-of-00006.safetensors",
|
124 |
+
"transformer.h.13.norm_1.bias": "model-00004-of-00006.safetensors",
|
125 |
+
"transformer.h.13.norm_1.weight": "model-00004-of-00006.safetensors",
|
126 |
+
"transformer.h.14.attn.adapter_wte.weight": "model-00004-of-00006.safetensors",
|
127 |
+
"transformer.h.14.attn.attn.adapter_bias": "model-00004-of-00006.safetensors",
|
128 |
+
"transformer.h.14.attn.attn.adapter_scale": "model-00004-of-00006.safetensors",
|
129 |
+
"transformer.h.14.attn.attn.linear.bias": "model-00004-of-00006.safetensors",
|
130 |
+
"transformer.h.14.attn.attn.linear.weight": "model-00004-of-00006.safetensors",
|
131 |
+
"transformer.h.14.attn.gating_factor": "model-00004-of-00006.safetensors",
|
132 |
+
"transformer.h.14.attn.proj.adapter_bias": "model-00004-of-00006.safetensors",
|
133 |
+
"transformer.h.14.attn.proj.adapter_scale": "model-00004-of-00006.safetensors",
|
134 |
+
"transformer.h.14.attn.proj.linear.bias": "model-00004-of-00006.safetensors",
|
135 |
+
"transformer.h.14.attn.proj.linear.weight": "model-00004-of-00006.safetensors",
|
136 |
+
"transformer.h.14.mlp.fc.adapter_bias": "model-00004-of-00006.safetensors",
|
137 |
+
"transformer.h.14.mlp.fc.adapter_scale": "model-00004-of-00006.safetensors",
|
138 |
+
"transformer.h.14.mlp.fc.linear.bias": "model-00004-of-00006.safetensors",
|
139 |
+
"transformer.h.14.mlp.fc.linear.weight": "model-00004-of-00006.safetensors",
|
140 |
+
"transformer.h.14.mlp.proj.adapter_bias": "model-00004-of-00006.safetensors",
|
141 |
+
"transformer.h.14.mlp.proj.adapter_scale": "model-00004-of-00006.safetensors",
|
142 |
+
"transformer.h.14.mlp.proj.linear.bias": "model-00004-of-00006.safetensors",
|
143 |
+
"transformer.h.14.mlp.proj.linear.weight": "model-00004-of-00006.safetensors",
|
144 |
+
"transformer.h.14.norm_1.bias": "model-00004-of-00006.safetensors",
|
145 |
+
"transformer.h.14.norm_1.weight": "model-00004-of-00006.safetensors",
|
146 |
+
"transformer.h.15.attn.adapter_wte.weight": "model-00005-of-00006.safetensors",
|
147 |
+
"transformer.h.15.attn.attn.adapter_bias": "model-00004-of-00006.safetensors",
|
148 |
+
"transformer.h.15.attn.attn.adapter_scale": "model-00004-of-00006.safetensors",
|
149 |
+
"transformer.h.15.attn.attn.linear.bias": "model-00005-of-00006.safetensors",
|
150 |
+
"transformer.h.15.attn.attn.linear.weight": "model-00005-of-00006.safetensors",
|
151 |
+
"transformer.h.15.attn.gating_factor": "model-00004-of-00006.safetensors",
|
152 |
+
"transformer.h.15.attn.proj.adapter_bias": "model-00005-of-00006.safetensors",
|
153 |
+
"transformer.h.15.attn.proj.adapter_scale": "model-00005-of-00006.safetensors",
|
154 |
+
"transformer.h.15.attn.proj.linear.bias": "model-00005-of-00006.safetensors",
|
155 |
+
"transformer.h.15.attn.proj.linear.weight": "model-00005-of-00006.safetensors",
|
156 |
+
"transformer.h.15.mlp.fc.adapter_bias": "model-00005-of-00006.safetensors",
|
157 |
+
"transformer.h.15.mlp.fc.adapter_scale": "model-00005-of-00006.safetensors",
|
158 |
+
"transformer.h.15.mlp.fc.linear.bias": "model-00005-of-00006.safetensors",
|
159 |
+
"transformer.h.15.mlp.fc.linear.weight": "model-00005-of-00006.safetensors",
|
160 |
+
"transformer.h.15.mlp.proj.adapter_bias": "model-00005-of-00006.safetensors",
|
161 |
+
"transformer.h.15.mlp.proj.adapter_scale": "model-00005-of-00006.safetensors",
|
162 |
+
"transformer.h.15.mlp.proj.linear.bias": "model-00005-of-00006.safetensors",
|
163 |
+
"transformer.h.15.mlp.proj.linear.weight": "model-00005-of-00006.safetensors",
|
164 |
+
"transformer.h.15.norm_1.bias": "model-00004-of-00006.safetensors",
|
165 |
+
"transformer.h.15.norm_1.weight": "model-00004-of-00006.safetensors",
|
166 |
+
"transformer.h.16.attn.adapter_wte.weight": "model-00005-of-00006.safetensors",
|
167 |
+
"transformer.h.16.attn.attn.adapter_bias": "model-00005-of-00006.safetensors",
|
168 |
+
"transformer.h.16.attn.attn.adapter_scale": "model-00005-of-00006.safetensors",
|
169 |
+
"transformer.h.16.attn.attn.linear.bias": "model-00005-of-00006.safetensors",
|
170 |
+
"transformer.h.16.attn.attn.linear.weight": "model-00005-of-00006.safetensors",
|
171 |
+
"transformer.h.16.attn.gating_factor": "model-00005-of-00006.safetensors",
|
172 |
+
"transformer.h.16.attn.proj.adapter_bias": "model-00005-of-00006.safetensors",
|
173 |
+
"transformer.h.16.attn.proj.adapter_scale": "model-00005-of-00006.safetensors",
|
174 |
+
"transformer.h.16.attn.proj.linear.bias": "model-00005-of-00006.safetensors",
|
175 |
+
"transformer.h.16.attn.proj.linear.weight": "model-00005-of-00006.safetensors",
|
176 |
+
"transformer.h.16.mlp.fc.adapter_bias": "model-00005-of-00006.safetensors",
|
177 |
+
"transformer.h.16.mlp.fc.adapter_scale": "model-00005-of-00006.safetensors",
|
178 |
+
"transformer.h.16.mlp.fc.linear.bias": "model-00005-of-00006.safetensors",
|
179 |
+
"transformer.h.16.mlp.fc.linear.weight": "model-00005-of-00006.safetensors",
|
180 |
+
"transformer.h.16.mlp.proj.adapter_bias": "model-00005-of-00006.safetensors",
|
181 |
+
"transformer.h.16.mlp.proj.adapter_scale": "model-00005-of-00006.safetensors",
|
182 |
+
"transformer.h.16.mlp.proj.linear.bias": "model-00005-of-00006.safetensors",
|
183 |
+
"transformer.h.16.mlp.proj.linear.weight": "model-00005-of-00006.safetensors",
|
184 |
+
"transformer.h.16.norm_1.bias": "model-00005-of-00006.safetensors",
|
185 |
+
"transformer.h.16.norm_1.weight": "model-00005-of-00006.safetensors",
|
186 |
+
"transformer.h.17.attn.adapter_wte.weight": "model-00005-of-00006.safetensors",
|
187 |
+
"transformer.h.17.attn.attn.adapter_bias": "model-00005-of-00006.safetensors",
|
188 |
+
"transformer.h.17.attn.attn.adapter_scale": "model-00005-of-00006.safetensors",
|
189 |
+
"transformer.h.17.attn.attn.linear.bias": "model-00005-of-00006.safetensors",
|
190 |
+
"transformer.h.17.attn.attn.linear.weight": "model-00005-of-00006.safetensors",
|
191 |
+
"transformer.h.17.attn.gating_factor": "model-00005-of-00006.safetensors",
|
192 |
+
"transformer.h.17.attn.proj.adapter_bias": "model-00005-of-00006.safetensors",
|
193 |
+
"transformer.h.17.attn.proj.adapter_scale": "model-00005-of-00006.safetensors",
|
194 |
+
"transformer.h.17.attn.proj.linear.bias": "model-00005-of-00006.safetensors",
|
195 |
+
"transformer.h.17.attn.proj.linear.weight": "model-00005-of-00006.safetensors",
|
196 |
+
"transformer.h.17.mlp.fc.adapter_bias": "model-00005-of-00006.safetensors",
|
197 |
+
"transformer.h.17.mlp.fc.adapter_scale": "model-00005-of-00006.safetensors",
|
198 |
+
"transformer.h.17.mlp.fc.linear.bias": "model-00005-of-00006.safetensors",
|
199 |
+
"transformer.h.17.mlp.fc.linear.weight": "model-00005-of-00006.safetensors",
|
200 |
+
"transformer.h.17.mlp.proj.adapter_bias": "model-00005-of-00006.safetensors",
|
201 |
+
"transformer.h.17.mlp.proj.adapter_scale": "model-00005-of-00006.safetensors",
|
202 |
+
"transformer.h.17.mlp.proj.linear.bias": "model-00005-of-00006.safetensors",
|
203 |
+
"transformer.h.17.mlp.proj.linear.weight": "model-00005-of-00006.safetensors",
|
204 |
+
"transformer.h.17.norm_1.bias": "model-00005-of-00006.safetensors",
|
205 |
+
"transformer.h.17.norm_1.weight": "model-00005-of-00006.safetensors",
|
206 |
+
"transformer.h.18.attn.adapter_wte.weight": "model-00005-of-00006.safetensors",
|
207 |
+
"transformer.h.18.attn.attn.adapter_bias": "model-00005-of-00006.safetensors",
|
208 |
+
"transformer.h.18.attn.attn.adapter_scale": "model-00005-of-00006.safetensors",
|
209 |
+
"transformer.h.18.attn.attn.linear.bias": "model-00005-of-00006.safetensors",
|
210 |
+
"transformer.h.18.attn.attn.linear.weight": "model-00005-of-00006.safetensors",
|
211 |
+
"transformer.h.18.attn.gating_factor": "model-00005-of-00006.safetensors",
|
212 |
+
"transformer.h.18.attn.proj.adapter_bias": "model-00005-of-00006.safetensors",
|
213 |
+
"transformer.h.18.attn.proj.adapter_scale": "model-00005-of-00006.safetensors",
|
214 |
+
"transformer.h.18.attn.proj.linear.bias": "model-00005-of-00006.safetensors",
|
215 |
+
"transformer.h.18.attn.proj.linear.weight": "model-00005-of-00006.safetensors",
|
216 |
+
"transformer.h.18.mlp.fc.adapter_bias": "model-00005-of-00006.safetensors",
|
217 |
+
"transformer.h.18.mlp.fc.adapter_scale": "model-00005-of-00006.safetensors",
|
218 |
+
"transformer.h.18.mlp.fc.linear.bias": "model-00005-of-00006.safetensors",
|
219 |
+
"transformer.h.18.mlp.fc.linear.weight": "model-00005-of-00006.safetensors",
|
220 |
+
"transformer.h.18.mlp.proj.adapter_bias": "model-00005-of-00006.safetensors",
|
221 |
+
"transformer.h.18.mlp.proj.adapter_scale": "model-00005-of-00006.safetensors",
|
222 |
+
"transformer.h.18.mlp.proj.linear.bias": "model-00005-of-00006.safetensors",
|
223 |
+
"transformer.h.18.mlp.proj.linear.weight": "model-00005-of-00006.safetensors",
|
224 |
+
"transformer.h.18.norm_1.bias": "model-00005-of-00006.safetensors",
|
225 |
+
"transformer.h.18.norm_1.weight": "model-00005-of-00006.safetensors",
|
226 |
+
"transformer.h.19.attn.adapter_wte.weight": "model-00005-of-00006.safetensors",
|
227 |
+
"transformer.h.19.attn.attn.adapter_bias": "model-00005-of-00006.safetensors",
|
228 |
+
"transformer.h.19.attn.attn.adapter_scale": "model-00005-of-00006.safetensors",
|
229 |
+
"transformer.h.19.attn.attn.linear.bias": "model-00005-of-00006.safetensors",
|
230 |
+
"transformer.h.19.attn.attn.linear.weight": "model-00005-of-00006.safetensors",
|
231 |
+
"transformer.h.19.attn.gating_factor": "model-00005-of-00006.safetensors",
|
232 |
+
"transformer.h.19.attn.proj.adapter_bias": "model-00005-of-00006.safetensors",
|
233 |
+
"transformer.h.19.attn.proj.adapter_scale": "model-00005-of-00006.safetensors",
|
234 |
+
"transformer.h.19.attn.proj.linear.bias": "model-00005-of-00006.safetensors",
|
235 |
+
"transformer.h.19.attn.proj.linear.weight": "model-00005-of-00006.safetensors",
|
236 |
+
"transformer.h.19.mlp.fc.adapter_bias": "model-00005-of-00006.safetensors",
|
237 |
+
"transformer.h.19.mlp.fc.adapter_scale": "model-00005-of-00006.safetensors",
|
238 |
+
"transformer.h.19.mlp.fc.linear.bias": "model-00005-of-00006.safetensors",
|
239 |
+
"transformer.h.19.mlp.fc.linear.weight": "model-00005-of-00006.safetensors",
|
240 |
+
"transformer.h.19.mlp.proj.adapter_bias": "model-00005-of-00006.safetensors",
|
241 |
+
"transformer.h.19.mlp.proj.adapter_scale": "model-00005-of-00006.safetensors",
|
242 |
+
"transformer.h.19.mlp.proj.linear.bias": "model-00006-of-00006.safetensors",
|
243 |
+
"transformer.h.19.mlp.proj.linear.weight": "model-00006-of-00006.safetensors",
|
244 |
+
"transformer.h.19.norm_1.bias": "model-00005-of-00006.safetensors",
|
245 |
+
"transformer.h.19.norm_1.weight": "model-00005-of-00006.safetensors",
|
246 |
+
"transformer.h.2.attn.adapter_wte.weight": "model-00002-of-00006.safetensors",
|
247 |
+
"transformer.h.2.attn.attn.adapter_bias": "model-00002-of-00006.safetensors",
|
248 |
+
"transformer.h.2.attn.attn.adapter_scale": "model-00002-of-00006.safetensors",
|
249 |
+
"transformer.h.2.attn.attn.linear.bias": "model-00002-of-00006.safetensors",
|
250 |
+
"transformer.h.2.attn.attn.linear.weight": "model-00002-of-00006.safetensors",
|
251 |
+
"transformer.h.2.attn.gating_factor": "model-00002-of-00006.safetensors",
|
252 |
+
"transformer.h.2.attn.proj.adapter_bias": "model-00002-of-00006.safetensors",
|
253 |
+
"transformer.h.2.attn.proj.adapter_scale": "model-00002-of-00006.safetensors",
|
254 |
+
"transformer.h.2.attn.proj.linear.bias": "model-00002-of-00006.safetensors",
|
255 |
+
"transformer.h.2.attn.proj.linear.weight": "model-00002-of-00006.safetensors",
|
256 |
+
"transformer.h.2.mlp.fc.adapter_bias": "model-00002-of-00006.safetensors",
|
257 |
+
"transformer.h.2.mlp.fc.adapter_scale": "model-00002-of-00006.safetensors",
|
258 |
+
"transformer.h.2.mlp.fc.linear.bias": "model-00002-of-00006.safetensors",
|
259 |
+
"transformer.h.2.mlp.fc.linear.weight": "model-00002-of-00006.safetensors",
|
260 |
+
"transformer.h.2.mlp.proj.adapter_bias": "model-00002-of-00006.safetensors",
|
261 |
+
"transformer.h.2.mlp.proj.adapter_scale": "model-00002-of-00006.safetensors",
|
262 |
+
"transformer.h.2.mlp.proj.linear.bias": "model-00002-of-00006.safetensors",
|
263 |
+
"transformer.h.2.mlp.proj.linear.weight": "model-00002-of-00006.safetensors",
|
264 |
+
"transformer.h.2.norm_1.bias": "model-00002-of-00006.safetensors",
|
265 |
+
"transformer.h.2.norm_1.weight": "model-00002-of-00006.safetensors",
|
266 |
+
"transformer.h.20.attn.adapter_wte.weight": "model-00006-of-00006.safetensors",
|
267 |
+
"transformer.h.20.attn.attn.adapter_bias": "model-00006-of-00006.safetensors",
|
268 |
+
"transformer.h.20.attn.attn.adapter_scale": "model-00006-of-00006.safetensors",
|
269 |
+
"transformer.h.20.attn.attn.linear.bias": "model-00006-of-00006.safetensors",
|
270 |
+
"transformer.h.20.attn.attn.linear.weight": "model-00006-of-00006.safetensors",
|
271 |
+
"transformer.h.20.attn.gating_factor": "model-00006-of-00006.safetensors",
|
272 |
+
"transformer.h.20.attn.proj.adapter_bias": "model-00006-of-00006.safetensors",
|
273 |
+
"transformer.h.20.attn.proj.adapter_scale": "model-00006-of-00006.safetensors",
|
274 |
+
"transformer.h.20.attn.proj.linear.bias": "model-00006-of-00006.safetensors",
|
275 |
+
"transformer.h.20.attn.proj.linear.weight": "model-00006-of-00006.safetensors",
|
276 |
+
"transformer.h.20.mlp.fc.adapter_bias": "model-00006-of-00006.safetensors",
|
277 |
+
"transformer.h.20.mlp.fc.adapter_scale": "model-00006-of-00006.safetensors",
|
278 |
+
"transformer.h.20.mlp.fc.linear.bias": "model-00006-of-00006.safetensors",
|
279 |
+
"transformer.h.20.mlp.fc.linear.weight": "model-00006-of-00006.safetensors",
|
280 |
+
"transformer.h.20.mlp.proj.adapter_bias": "model-00006-of-00006.safetensors",
|
281 |
+
"transformer.h.20.mlp.proj.adapter_scale": "model-00006-of-00006.safetensors",
|
282 |
+
"transformer.h.20.mlp.proj.linear.bias": "model-00006-of-00006.safetensors",
|
283 |
+
"transformer.h.20.mlp.proj.linear.weight": "model-00006-of-00006.safetensors",
|
284 |
+
"transformer.h.20.norm_1.bias": "model-00006-of-00006.safetensors",
|
285 |
+
"transformer.h.20.norm_1.weight": "model-00006-of-00006.safetensors",
|
286 |
+
"transformer.h.21.attn.adapter_wte.weight": "model-00006-of-00006.safetensors",
|
287 |
+
"transformer.h.21.attn.attn.adapter_bias": "model-00006-of-00006.safetensors",
|
288 |
+
"transformer.h.21.attn.attn.adapter_scale": "model-00006-of-00006.safetensors",
|
289 |
+
"transformer.h.21.attn.attn.linear.bias": "model-00006-of-00006.safetensors",
|
290 |
+
"transformer.h.21.attn.attn.linear.weight": "model-00006-of-00006.safetensors",
|
291 |
+
"transformer.h.21.attn.gating_factor": "model-00006-of-00006.safetensors",
|
292 |
+
"transformer.h.21.attn.proj.adapter_bias": "model-00006-of-00006.safetensors",
|
293 |
+
"transformer.h.21.attn.proj.adapter_scale": "model-00006-of-00006.safetensors",
|
294 |
+
"transformer.h.21.attn.proj.linear.bias": "model-00006-of-00006.safetensors",
|
295 |
+
"transformer.h.21.attn.proj.linear.weight": "model-00006-of-00006.safetensors",
|
296 |
+
"transformer.h.21.mlp.fc.adapter_bias": "model-00006-of-00006.safetensors",
|
297 |
+
"transformer.h.21.mlp.fc.adapter_scale": "model-00006-of-00006.safetensors",
|
298 |
+
"transformer.h.21.mlp.fc.linear.bias": "model-00006-of-00006.safetensors",
|
299 |
+
"transformer.h.21.mlp.fc.linear.weight": "model-00006-of-00006.safetensors",
|
300 |
+
"transformer.h.21.mlp.proj.adapter_bias": "model-00006-of-00006.safetensors",
|
301 |
+
"transformer.h.21.mlp.proj.adapter_scale": "model-00006-of-00006.safetensors",
|
302 |
+
"transformer.h.21.mlp.proj.linear.bias": "model-00006-of-00006.safetensors",
|
303 |
+
"transformer.h.21.mlp.proj.linear.weight": "model-00006-of-00006.safetensors",
|
304 |
+
"transformer.h.21.norm_1.bias": "model-00006-of-00006.safetensors",
|
305 |
+
"transformer.h.21.norm_1.weight": "model-00006-of-00006.safetensors",
|
306 |
+
"transformer.h.22.attn.adapter_wte.weight": "model-00006-of-00006.safetensors",
|
307 |
+
"transformer.h.22.attn.attn.adapter_bias": "model-00006-of-00006.safetensors",
|
308 |
+
"transformer.h.22.attn.attn.adapter_scale": "model-00006-of-00006.safetensors",
|
309 |
+
"transformer.h.22.attn.attn.linear.bias": "model-00006-of-00006.safetensors",
|
310 |
+
"transformer.h.22.attn.attn.linear.weight": "model-00006-of-00006.safetensors",
|
311 |
+
"transformer.h.22.attn.gating_factor": "model-00006-of-00006.safetensors",
|
312 |
+
"transformer.h.22.attn.proj.adapter_bias": "model-00006-of-00006.safetensors",
|
313 |
+
"transformer.h.22.attn.proj.adapter_scale": "model-00006-of-00006.safetensors",
|
314 |
+
"transformer.h.22.attn.proj.linear.bias": "model-00006-of-00006.safetensors",
|
315 |
+
"transformer.h.22.attn.proj.linear.weight": "model-00006-of-00006.safetensors",
|
316 |
+
"transformer.h.22.mlp.fc.adapter_bias": "model-00006-of-00006.safetensors",
|
317 |
+
"transformer.h.22.mlp.fc.adapter_scale": "model-00006-of-00006.safetensors",
|
318 |
+
"transformer.h.22.mlp.fc.linear.bias": "model-00006-of-00006.safetensors",
|
319 |
+
"transformer.h.22.mlp.fc.linear.weight": "model-00006-of-00006.safetensors",
|
320 |
+
"transformer.h.22.mlp.proj.adapter_bias": "model-00006-of-00006.safetensors",
|
321 |
+
"transformer.h.22.mlp.proj.adapter_scale": "model-00006-of-00006.safetensors",
|
322 |
+
"transformer.h.22.mlp.proj.linear.bias": "model-00006-of-00006.safetensors",
|
323 |
+
"transformer.h.22.mlp.proj.linear.weight": "model-00006-of-00006.safetensors",
|
324 |
+
"transformer.h.22.norm_1.bias": "model-00006-of-00006.safetensors",
|
325 |
+
"transformer.h.22.norm_1.weight": "model-00006-of-00006.safetensors",
|
326 |
+
"transformer.h.23.attn.adapter_wte.weight": "model-00006-of-00006.safetensors",
|
327 |
+
"transformer.h.23.attn.attn.adapter_bias": "model-00006-of-00006.safetensors",
|
328 |
+
"transformer.h.23.attn.attn.adapter_scale": "model-00006-of-00006.safetensors",
|
329 |
+
"transformer.h.23.attn.attn.linear.bias": "model-00006-of-00006.safetensors",
|
330 |
+
"transformer.h.23.attn.attn.linear.weight": "model-00006-of-00006.safetensors",
|
331 |
+
"transformer.h.23.attn.gating_factor": "model-00006-of-00006.safetensors",
|
332 |
+
"transformer.h.23.attn.proj.adapter_bias": "model-00006-of-00006.safetensors",
|
333 |
+
"transformer.h.23.attn.proj.adapter_scale": "model-00006-of-00006.safetensors",
|
334 |
+
"transformer.h.23.attn.proj.linear.bias": "model-00006-of-00006.safetensors",
|
335 |
+
"transformer.h.23.attn.proj.linear.weight": "model-00006-of-00006.safetensors",
|
336 |
+
"transformer.h.23.mlp.fc.adapter_bias": "model-00006-of-00006.safetensors",
|
337 |
+
"transformer.h.23.mlp.fc.adapter_scale": "model-00006-of-00006.safetensors",
|
338 |
+
"transformer.h.23.mlp.fc.linear.bias": "model-00006-of-00006.safetensors",
|
339 |
+
"transformer.h.23.mlp.fc.linear.weight": "model-00006-of-00006.safetensors",
|
340 |
+
"transformer.h.23.mlp.proj.adapter_bias": "model-00006-of-00006.safetensors",
|
341 |
+
"transformer.h.23.mlp.proj.adapter_scale": "model-00006-of-00006.safetensors",
|
342 |
+
"transformer.h.23.mlp.proj.linear.bias": "model-00006-of-00006.safetensors",
|
343 |
+
"transformer.h.23.mlp.proj.linear.weight": "model-00006-of-00006.safetensors",
|
344 |
+
"transformer.h.23.norm_1.bias": "model-00006-of-00006.safetensors",
|
345 |
+
"transformer.h.23.norm_1.weight": "model-00006-of-00006.safetensors",
|
346 |
+
"transformer.h.3.attn.adapter_wte.weight": "model-00002-of-00006.safetensors",
|
347 |
+
"transformer.h.3.attn.attn.adapter_bias": "model-00002-of-00006.safetensors",
|
348 |
+
"transformer.h.3.attn.attn.adapter_scale": "model-00002-of-00006.safetensors",
|
349 |
+
"transformer.h.3.attn.attn.linear.bias": "model-00002-of-00006.safetensors",
|
350 |
+
"transformer.h.3.attn.attn.linear.weight": "model-00002-of-00006.safetensors",
|
351 |
+
"transformer.h.3.attn.gating_factor": "model-00002-of-00006.safetensors",
|
352 |
+
"transformer.h.3.attn.proj.adapter_bias": "model-00002-of-00006.safetensors",
|
353 |
+
"transformer.h.3.attn.proj.adapter_scale": "model-00002-of-00006.safetensors",
|
354 |
+
"transformer.h.3.attn.proj.linear.bias": "model-00002-of-00006.safetensors",
|
355 |
+
"transformer.h.3.attn.proj.linear.weight": "model-00002-of-00006.safetensors",
|
356 |
+
"transformer.h.3.mlp.fc.adapter_bias": "model-00002-of-00006.safetensors",
|
357 |
+
"transformer.h.3.mlp.fc.adapter_scale": "model-00002-of-00006.safetensors",
|
358 |
+
"transformer.h.3.mlp.fc.linear.bias": "model-00002-of-00006.safetensors",
|
359 |
+
"transformer.h.3.mlp.fc.linear.weight": "model-00002-of-00006.safetensors",
|
360 |
+
"transformer.h.3.mlp.proj.adapter_bias": "model-00002-of-00006.safetensors",
|
361 |
+
"transformer.h.3.mlp.proj.adapter_scale": "model-00002-of-00006.safetensors",
|
362 |
+
"transformer.h.3.mlp.proj.linear.bias": "model-00002-of-00006.safetensors",
|
363 |
+
"transformer.h.3.mlp.proj.linear.weight": "model-00002-of-00006.safetensors",
|
364 |
+
"transformer.h.3.norm_1.bias": "model-00002-of-00006.safetensors",
|
365 |
+
"transformer.h.3.norm_1.weight": "model-00002-of-00006.safetensors",
|
366 |
+
"transformer.h.4.attn.adapter_wte.weight": "model-00002-of-00006.safetensors",
|
367 |
+
"transformer.h.4.attn.attn.adapter_bias": "model-00002-of-00006.safetensors",
|
368 |
+
"transformer.h.4.attn.attn.adapter_scale": "model-00002-of-00006.safetensors",
|
369 |
+
"transformer.h.4.attn.attn.linear.bias": "model-00002-of-00006.safetensors",
|
370 |
+
"transformer.h.4.attn.attn.linear.weight": "model-00002-of-00006.safetensors",
|
371 |
+
"transformer.h.4.attn.gating_factor": "model-00002-of-00006.safetensors",
|
372 |
+
"transformer.h.4.attn.proj.adapter_bias": "model-00002-of-00006.safetensors",
|
373 |
+
"transformer.h.4.attn.proj.adapter_scale": "model-00002-of-00006.safetensors",
|
374 |
+
"transformer.h.4.attn.proj.linear.bias": "model-00002-of-00006.safetensors",
|
375 |
+
"transformer.h.4.attn.proj.linear.weight": "model-00002-of-00006.safetensors",
|
376 |
+
"transformer.h.4.mlp.fc.adapter_bias": "model-00002-of-00006.safetensors",
|
377 |
+
"transformer.h.4.mlp.fc.adapter_scale": "model-00002-of-00006.safetensors",
|
378 |
+
"transformer.h.4.mlp.fc.linear.bias": "model-00002-of-00006.safetensors",
|
379 |
+
"transformer.h.4.mlp.fc.linear.weight": "model-00002-of-00006.safetensors",
|
380 |
+
"transformer.h.4.mlp.proj.adapter_bias": "model-00002-of-00006.safetensors",
|
381 |
+
"transformer.h.4.mlp.proj.adapter_scale": "model-00002-of-00006.safetensors",
|
382 |
+
"transformer.h.4.mlp.proj.linear.bias": "model-00002-of-00006.safetensors",
|
383 |
+
"transformer.h.4.mlp.proj.linear.weight": "model-00002-of-00006.safetensors",
|
384 |
+
"transformer.h.4.norm_1.bias": "model-00002-of-00006.safetensors",
|
385 |
+
"transformer.h.4.norm_1.weight": "model-00002-of-00006.safetensors",
|
386 |
+
"transformer.h.5.attn.adapter_wte.weight": "model-00002-of-00006.safetensors",
|
387 |
+
"transformer.h.5.attn.attn.adapter_bias": "model-00002-of-00006.safetensors",
|
388 |
+
"transformer.h.5.attn.attn.adapter_scale": "model-00002-of-00006.safetensors",
|
389 |
+
"transformer.h.5.attn.attn.linear.bias": "model-00002-of-00006.safetensors",
|
390 |
+
"transformer.h.5.attn.attn.linear.weight": "model-00002-of-00006.safetensors",
|
391 |
+
"transformer.h.5.attn.gating_factor": "model-00002-of-00006.safetensors",
|
392 |
+
"transformer.h.5.attn.proj.adapter_bias": "model-00002-of-00006.safetensors",
|
393 |
+
"transformer.h.5.attn.proj.adapter_scale": "model-00002-of-00006.safetensors",
|
394 |
+
"transformer.h.5.attn.proj.linear.bias": "model-00002-of-00006.safetensors",
|
395 |
+
"transformer.h.5.attn.proj.linear.weight": "model-00002-of-00006.safetensors",
|
396 |
+
"transformer.h.5.mlp.fc.adapter_bias": "model-00002-of-00006.safetensors",
|
397 |
+
"transformer.h.5.mlp.fc.adapter_scale": "model-00002-of-00006.safetensors",
|
398 |
+
"transformer.h.5.mlp.fc.linear.bias": "model-00003-of-00006.safetensors",
|
399 |
+
"transformer.h.5.mlp.fc.linear.weight": "model-00003-of-00006.safetensors",
|
400 |
+
"transformer.h.5.mlp.proj.adapter_bias": "model-00003-of-00006.safetensors",
|
401 |
+
"transformer.h.5.mlp.proj.adapter_scale": "model-00003-of-00006.safetensors",
|
402 |
+
"transformer.h.5.mlp.proj.linear.bias": "model-00003-of-00006.safetensors",
|
403 |
+
"transformer.h.5.mlp.proj.linear.weight": "model-00003-of-00006.safetensors",
|
404 |
+
"transformer.h.5.norm_1.bias": "model-00002-of-00006.safetensors",
|
405 |
+
"transformer.h.5.norm_1.weight": "model-00002-of-00006.safetensors",
|
406 |
+
"transformer.h.6.attn.adapter_wte.weight": "model-00003-of-00006.safetensors",
|
407 |
+
"transformer.h.6.attn.attn.adapter_bias": "model-00003-of-00006.safetensors",
|
408 |
+
"transformer.h.6.attn.attn.adapter_scale": "model-00003-of-00006.safetensors",
|
409 |
+
"transformer.h.6.attn.attn.linear.bias": "model-00003-of-00006.safetensors",
|
410 |
+
"transformer.h.6.attn.attn.linear.weight": "model-00003-of-00006.safetensors",
|
411 |
+
"transformer.h.6.attn.gating_factor": "model-00003-of-00006.safetensors",
|
412 |
+
"transformer.h.6.attn.proj.adapter_bias": "model-00003-of-00006.safetensors",
|
413 |
+
"transformer.h.6.attn.proj.adapter_scale": "model-00003-of-00006.safetensors",
|
414 |
+
"transformer.h.6.attn.proj.linear.bias": "model-00003-of-00006.safetensors",
|
415 |
+
"transformer.h.6.attn.proj.linear.weight": "model-00003-of-00006.safetensors",
|
416 |
+
"transformer.h.6.mlp.fc.adapter_bias": "model-00003-of-00006.safetensors",
|
417 |
+
"transformer.h.6.mlp.fc.adapter_scale": "model-00003-of-00006.safetensors",
|
418 |
+
"transformer.h.6.mlp.fc.linear.bias": "model-00003-of-00006.safetensors",
|
419 |
+
"transformer.h.6.mlp.fc.linear.weight": "model-00003-of-00006.safetensors",
|
420 |
+
"transformer.h.6.mlp.proj.adapter_bias": "model-00003-of-00006.safetensors",
|
421 |
+
"transformer.h.6.mlp.proj.adapter_scale": "model-00003-of-00006.safetensors",
|
422 |
+
"transformer.h.6.mlp.proj.linear.bias": "model-00003-of-00006.safetensors",
|
423 |
+
"transformer.h.6.mlp.proj.linear.weight": "model-00003-of-00006.safetensors",
|
424 |
+
"transformer.h.6.norm_1.bias": "model-00003-of-00006.safetensors",
|
425 |
+
"transformer.h.6.norm_1.weight": "model-00003-of-00006.safetensors",
|
426 |
+
"transformer.h.7.attn.adapter_wte.weight": "model-00003-of-00006.safetensors",
|
427 |
+
"transformer.h.7.attn.attn.adapter_bias": "model-00003-of-00006.safetensors",
|
428 |
+
"transformer.h.7.attn.attn.adapter_scale": "model-00003-of-00006.safetensors",
|
429 |
+
"transformer.h.7.attn.attn.linear.bias": "model-00003-of-00006.safetensors",
|
430 |
+
"transformer.h.7.attn.attn.linear.weight": "model-00003-of-00006.safetensors",
|
431 |
+
"transformer.h.7.attn.gating_factor": "model-00003-of-00006.safetensors",
|
432 |
+
"transformer.h.7.attn.proj.adapter_bias": "model-00003-of-00006.safetensors",
|
433 |
+
"transformer.h.7.attn.proj.adapter_scale": "model-00003-of-00006.safetensors",
|
434 |
+
"transformer.h.7.attn.proj.linear.bias": "model-00003-of-00006.safetensors",
|
435 |
+
"transformer.h.7.attn.proj.linear.weight": "model-00003-of-00006.safetensors",
|
436 |
+
"transformer.h.7.mlp.fc.adapter_bias": "model-00003-of-00006.safetensors",
|
437 |
+
"transformer.h.7.mlp.fc.adapter_scale": "model-00003-of-00006.safetensors",
|
438 |
+
"transformer.h.7.mlp.fc.linear.bias": "model-00003-of-00006.safetensors",
|
439 |
+
"transformer.h.7.mlp.fc.linear.weight": "model-00003-of-00006.safetensors",
|
440 |
+
"transformer.h.7.mlp.proj.adapter_bias": "model-00003-of-00006.safetensors",
|
441 |
+
"transformer.h.7.mlp.proj.adapter_scale": "model-00003-of-00006.safetensors",
|
442 |
+
"transformer.h.7.mlp.proj.linear.bias": "model-00003-of-00006.safetensors",
|
443 |
+
"transformer.h.7.mlp.proj.linear.weight": "model-00003-of-00006.safetensors",
|
444 |
+
"transformer.h.7.norm_1.bias": "model-00003-of-00006.safetensors",
|
445 |
+
"transformer.h.7.norm_1.weight": "model-00003-of-00006.safetensors",
|
446 |
+
"transformer.h.8.attn.adapter_wte.weight": "model-00003-of-00006.safetensors",
|
447 |
+
"transformer.h.8.attn.attn.adapter_bias": "model-00003-of-00006.safetensors",
|
448 |
+
"transformer.h.8.attn.attn.adapter_scale": "model-00003-of-00006.safetensors",
|
449 |
+
"transformer.h.8.attn.attn.linear.bias": "model-00003-of-00006.safetensors",
|
450 |
+
"transformer.h.8.attn.attn.linear.weight": "model-00003-of-00006.safetensors",
|
451 |
+
"transformer.h.8.attn.gating_factor": "model-00003-of-00006.safetensors",
|
452 |
+
"transformer.h.8.attn.proj.adapter_bias": "model-00003-of-00006.safetensors",
|
453 |
+
"transformer.h.8.attn.proj.adapter_scale": "model-00003-of-00006.safetensors",
|
454 |
+
"transformer.h.8.attn.proj.linear.bias": "model-00003-of-00006.safetensors",
|
455 |
+
"transformer.h.8.attn.proj.linear.weight": "model-00003-of-00006.safetensors",
|
456 |
+
"transformer.h.8.mlp.fc.adapter_bias": "model-00003-of-00006.safetensors",
|
457 |
+
"transformer.h.8.mlp.fc.adapter_scale": "model-00003-of-00006.safetensors",
|
458 |
+
"transformer.h.8.mlp.fc.linear.bias": "model-00003-of-00006.safetensors",
|
459 |
+
"transformer.h.8.mlp.fc.linear.weight": "model-00003-of-00006.safetensors",
|
460 |
+
"transformer.h.8.mlp.proj.adapter_bias": "model-00003-of-00006.safetensors",
|
461 |
+
"transformer.h.8.mlp.proj.adapter_scale": "model-00003-of-00006.safetensors",
|
462 |
+
"transformer.h.8.mlp.proj.linear.bias": "model-00003-of-00006.safetensors",
|
463 |
+
"transformer.h.8.mlp.proj.linear.weight": "model-00003-of-00006.safetensors",
|
464 |
+
"transformer.h.8.norm_1.bias": "model-00003-of-00006.safetensors",
|
465 |
+
"transformer.h.8.norm_1.weight": "model-00003-of-00006.safetensors",
|
466 |
+
"transformer.h.9.attn.adapter_wte.weight": "model-00003-of-00006.safetensors",
|
467 |
+
"transformer.h.9.attn.attn.adapter_bias": "model-00003-of-00006.safetensors",
|
468 |
+
"transformer.h.9.attn.attn.adapter_scale": "model-00003-of-00006.safetensors",
|
469 |
+
"transformer.h.9.attn.attn.linear.bias": "model-00003-of-00006.safetensors",
|
470 |
+
"transformer.h.9.attn.attn.linear.weight": "model-00003-of-00006.safetensors",
|
471 |
+
"transformer.h.9.attn.gating_factor": "model-00003-of-00006.safetensors",
|
472 |
+
"transformer.h.9.attn.proj.adapter_bias": "model-00003-of-00006.safetensors",
|
473 |
+
"transformer.h.9.attn.proj.adapter_scale": "model-00003-of-00006.safetensors",
|
474 |
+
"transformer.h.9.attn.proj.linear.bias": "model-00003-of-00006.safetensors",
|
475 |
+
"transformer.h.9.attn.proj.linear.weight": "model-00003-of-00006.safetensors",
|
476 |
+
"transformer.h.9.mlp.fc.adapter_bias": "model-00003-of-00006.safetensors",
|
477 |
+
"transformer.h.9.mlp.fc.adapter_scale": "model-00003-of-00006.safetensors",
|
478 |
+
"transformer.h.9.mlp.fc.linear.bias": "model-00003-of-00006.safetensors",
|
479 |
+
"transformer.h.9.mlp.fc.linear.weight": "model-00003-of-00006.safetensors",
|
480 |
+
"transformer.h.9.mlp.proj.adapter_bias": "model-00003-of-00006.safetensors",
|
481 |
+
"transformer.h.9.mlp.proj.adapter_scale": "model-00003-of-00006.safetensors",
|
482 |
+
"transformer.h.9.mlp.proj.linear.bias": "model-00003-of-00006.safetensors",
|
483 |
+
"transformer.h.9.mlp.proj.linear.weight": "model-00003-of-00006.safetensors",
|
484 |
+
"transformer.h.9.norm_1.bias": "model-00003-of-00006.safetensors",
|
485 |
+
"transformer.h.9.norm_1.weight": "model-00003-of-00006.safetensors",
|
486 |
+
"transformer.ln_f.bias": "model-00006-of-00006.safetensors",
|
487 |
+
"transformer.ln_f.weight": "model-00006-of-00006.safetensors",
|
488 |
+
"transformer.wte.weight": "model-00001-of-00006.safetensors"
|
489 |
+
}
|
490 |
+
}
|