Image Classification
Transformers
vision
Inference Endpoints
kamalkraj commited on
Commit
a4411aa
·
1 Parent(s): 27c7ae9

model card

Browse files
Files changed (1) hide show
  1. README.md +105 -0
README.md ADDED
@@ -0,0 +1,105 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ ---
3
+ license: apache-2.0
4
+ tags:
5
+ - vision
6
+ - image-classification
7
+ datasets:
8
+ - nih-pc-chex-mimic_ch-google-openi-rsna
9
+ ---
10
+
11
+
12
+ # resnet50-res512-all
13
+
14
+ ResNet (Residual Network) is a convolutional neural network that democratized the concepts of residual learning and skip connections. This enables to train much deeper models.
15
+
16
+ This model was trained on the datasets pc-nih-rsna-siim-vin at a 512x512 resolution.
17
+
18
+ ### How to use
19
+
20
+ Here is how to use this model to classify an image of xray:
21
+
22
+ ```python
23
+ import urllib.request
24
+
25
+ import skimage
26
+ import torch
27
+ import torch.nn.functional as F
28
+ import torchvision
29
+ import torchvision.transforms
30
+
31
+ import torchxrayvision as xrv
32
+
33
+ model_name = "resnet50-res512-all"
34
+
35
+ img_url = "https://huggingface.co/spaces/torchxrayvision/torchxrayvision-classifier/resolve/main/16747_3_1.jpg"
36
+ img_path = "xray.jpg"
37
+ urllib.request.urlretrieve(img_url, img_path)
38
+
39
+ model = xrv.models.get_model(model_name, from_hf_hub=True)
40
+
41
+ img = skimage.io.imread(img_path)
42
+ img = xrv.datasets.normalize(img, 255)
43
+
44
+ # Check that images are 2D arrays
45
+ if len(img.shape) > 2:
46
+ img = img[:, :, 0]
47
+ if len(img.shape) < 2:
48
+ print("error, dimension lower than 2 for image")
49
+
50
+ # Add color channel
51
+ img = img[None, :, :]
52
+
53
+ transform = torchvision.transforms.Compose([xrv.datasets.XRayCenterCrop()])
54
+
55
+ img = transform(img)
56
+
57
+ with torch.no_grad():
58
+ img = torch.from_numpy(img).unsqueeze(0)
59
+ preds = model(img).cpu()
60
+ output = {
61
+ k: float(v)
62
+ for k, v in zip(xrv.datasets.default_pathologies, preds[0].detach().numpy())
63
+ }
64
+ print(output)
65
+
66
+ ```
67
+ For more code examples, we refer to the [example scripts](https://github.com/kamalkraj/torchxrayvision/blob/master/scripts).
68
+
69
+
70
+ ### Citation
71
+
72
+ Primary TorchXRayVision paper: [https://arxiv.org/abs/2111.00595](https://arxiv.org/abs/2111.00595)
73
+
74
+ ```
75
+ Joseph Paul Cohen, Joseph D. Viviano, Paul Bertin, Paul Morrison, Parsa Torabian, Matteo Guarrera, Matthew P Lungren, Akshay Chaudhari, Rupert Brooks, Mohammad Hashir, Hadrien Bertrand
76
+ TorchXRayVision: A library of chest X-ray datasets and models.
77
+ https://github.com/mlmed/torchxrayvision, 2020
78
+
79
+
80
+ @article{Cohen2020xrv,
81
+ author = {Cohen, Joseph Paul and Viviano, Joseph D. and Bertin, Paul and Morrison, Paul and Torabian, Parsa and Guarrera, Matteo and Lungren, Matthew P and Chaudhari, Akshay and Brooks, Rupert and Hashir, Mohammad and Bertrand, Hadrien},
82
+ journal = {https://github.com/mlmed/torchxrayvision},
83
+ title = {{TorchXRayVision: A library of chest X-ray datasets and models}},
84
+ url = {https://github.com/mlmed/torchxrayvision},
85
+ year = {2020}
86
+ arxivId = {2111.00595},
87
+ }
88
+
89
+
90
+ ```
91
+ and this paper which initiated development of the library: [https://arxiv.org/abs/2002.02497](https://arxiv.org/abs/2002.02497)
92
+ ```
93
+ Joseph Paul Cohen and Mohammad Hashir and Rupert Brooks and Hadrien Bertrand
94
+ On the limits of cross-domain generalization in automated X-ray prediction.
95
+ Medical Imaging with Deep Learning 2020 (Online: https://arxiv.org/abs/2002.02497)
96
+
97
+ @inproceedings{cohen2020limits,
98
+ title={On the limits of cross-domain generalization in automated X-ray prediction},
99
+ author={Cohen, Joseph Paul and Hashir, Mohammad and Brooks, Rupert and Bertrand, Hadrien},
100
+ booktitle={Medical Imaging with Deep Learning},
101
+ year={2020},
102
+ url={https://arxiv.org/abs/2002.02497}
103
+ }
104
+ ```
105
+