File size: 1,603 Bytes
3e8dafb 0bce89d 3e8dafb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
library_name: peft
license: apache-2.0
base_model: unsloth/Qwen2.5-1.5B-Instruct
tags:
- unsloth
- trl
- sft
- generated_from_trainer
model-index:
- name: unsloth-qwen1.5-glaive-function-callin
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/mikhail_bykov-quantumone-consulting/qwen_8b_work/runs/emxnhlww)
# unsloth-qwen1.5-glaive-function-callin
This model is a fine-tuned version of [unsloth/Qwen2.5-1.5B-Instruct](https://huggingface.co/unsloth/Qwen2.5-1.5B-Instruct) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 8
- seed: 3407
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use adamw_8bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 5
- training_steps: 100
- mixed_precision_training: Native AMP
### Framework versions
- PEFT 0.14.0
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.20.3 |