File size: 5,899 Bytes
90249e5 23a3e06 90249e5 23a3e06 d9093c4 251d8d9 d9093c4 251d8d9 d9093c4 23a3e06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 |
---
license: cc-by-nc-4.0
datasets:
- turing-motors/LLaVA-Pretrain-JA
- turing-motors/LLaVA-v1.5-Instruct-620K-JA
language:
- ja
pipeline_tag: image-to-text
tags:
- vision
- image-captioning
- VQA
---
# LLaVA-JP Model Card
## Model detail
**Model type:**
LLaVA-JP is a vision-language model that can converse about input images.<br>
This model is an LVLM model trained using [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) as the image encoder and [llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) as the text decoder. supports the input of 768 x 768 high resolution images by scaling_on_scales method.
**Training:**
This model was initially trained with the Vision Projector using LLaVA-Pretrain-JA.<br>
In the second phase, it was fine-tuned with LLaVA-v1.5-Instruct-620K-JA.
resources for more information: https://github.com/tosiyuki/LLaVA-JP/tree/main
**Comparing VLMs**
|Model|JA-VG-VQA-500<br>(ROUGE-L)|JA-VLM-Bench-In-the-Wild<br>(ROUGE-L)|Heron-Bench(Detail)|Heron-Bench(Conv)|Heron-Bench(Complex)|Heron-Bench(Average)
|-|-|-|-|-|-|-|
|[Japanese Stable VLM](https://huggingface.co/stabilityai/japanese-stable-vlm)|-|40.50|25.15|51.23|37.84|38.07|
|[EvoVLM-JP-v1-7B](https://huggingface.co/SakanaAI/EvoVLM-JP-v1-7B)|**19.70**|**51.25**|50.31|44.42|40.47|45.07|
|[Heron BLIP Japanese StableLM Base 7B llava-620k](https://huggingface.co/turing-motors/heron-chat-blip-ja-stablelm-base-7b-v1-llava-620k)|14.51|33.26|49.09|41.51|45.72|45.44|
|[Heron GIT Japanese StableLM Base 7B](https://huggingface.co/turing-motors/heron-chat-git-ja-stablelm-base-7b-v1)|15.18|37.82|42.77|**54.20**|43.53|46.83|
|[llava-jp-1.3b-v1.0-620k](https://huggingface.co/toshi456/llava-jp-1.3b-v1.0-620k)|12.69|44.58|**51.21**|41.05|45.95|44.84|
|[llava-jp-1.3b-v1.1](https://huggingface.co/toshi456/llava-jp-1.3b-v1.1)|13.33|44.40|50.00|51.83|**48.98**|**50.39**|
![image/png](https://cdn-uploads.huggingface.co/production/uploads/630af71ffaaea618ebc973db/rnzCN-LFpK4iDL5RZ9oyI.png)
## How to use the model
**1. Download dependencies**
```
git clone https://github.com/tosiyuki/LLaVA-JP.git
```
**2. Inference**
```python
import requests
import torch
import transformers
from PIL import Image
from transformers.generation.streamers import TextStreamer
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments
from llava.train.dataset import tokenizer_image_token
if __name__ == "__main__":
model_path = 'toshi456/llava-jp-1.3b-v1.1'
device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32
model = LlavaGpt2ForCausalLM.from_pretrained(
model_path,
low_cpu_mem_usage=True,
use_safetensors=True,
torch_dtype=torch_dtype,
device_map=device,
)
tokenizer = transformers.AutoTokenizer.from_pretrained(
model_path,
model_max_length=1532,
padding_side="right",
use_fast=False,
)
model.eval()
conv_mode = "v1"
conv = conv_templates[conv_mode].copy()
# image pre-process
image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
image_size = model.get_model().vision_tower.image_processor.size["height"]
if model.get_model().vision_tower.scales is not None:
image_size = model.get_model().vision_tower.image_processor.size["height"] * len(model.get_model().vision_tower.scales)
if device == "cuda":
image_tensor = model.get_model().vision_tower.image_processor(
image,
return_tensors='pt',
size={"height": image_size, "width": image_size}
)['pixel_values'].half().cuda().to(torch_dtype)
else:
image_tensor = model.get_model().vision_tower.image_processor(
image,
return_tensors='pt',
size={"height": image_size, "width": image_size}
)['pixel_values'].to(torch_dtype)
# create prompt
# ユーザー: <image>\n{prompt}
prompt = "猫の隣には何がありますか?"
inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
conv.append_message(conv.roles[0], inp)
conv.append_message(conv.roles[1], None)
prompt = conv.get_prompt()
input_ids = tokenizer_image_token(
prompt,
tokenizer,
IMAGE_TOKEN_INDEX,
return_tensors='pt'
).unsqueeze(0)
if device == "cuda":
input_ids = input_ids.to(device)
input_ids = input_ids[:, :-1] # </sep>がinputの最後に入るので削除する
stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
keywords = [stop_str]
streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0)
# predict
with torch.inference_mode():
model.generate(
inputs=input_ids,
images=image_tensor,
do_sample=True,
temperature=0.1,
top_p=1.0,
max_new_tokens=256,
streamer=streamer,
use_cache=True,
)
"""猫の隣にはノートパソコンがあります。"""
```
## Training dataset
**Stage1 Pretrain**
- [LLaVA-Pretrain-JA](https://huggingface.co/datasets/turing-motors/LLaVA-Pretrain-JA)
**Stage2 Fine-tuning**
- [LLaVA-v1.5-Instruct-620K-JA](https://huggingface.co/datasets/turing-motors/LLaVA-v1.5-Instruct-620K-JA)
## Acknowledgement
- [LLaVA](https://llava-vl.github.io/)
- [LLM-jp](https://llm-jp.nii.ac.jp/)
- [scaling_on_scales](https://github.com/bfshi/scaling_on_scales/tree/master)
## License
cc-by-nc-4.0 |