File size: 5,899 Bytes
90249e5
 
23a3e06
 
 
 
 
 
 
 
 
 
90249e5
23a3e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d9093c4
 
 
 
251d8d9
d9093c4
251d8d9
 
 
d9093c4
 
 
23a3e06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
---
license: cc-by-nc-4.0
datasets:
- turing-motors/LLaVA-Pretrain-JA
- turing-motors/LLaVA-v1.5-Instruct-620K-JA
language:
- ja
pipeline_tag: image-to-text
tags:
- vision
- image-captioning
- VQA
---

# LLaVA-JP Model Card

## Model detail

**Model type:**

LLaVA-JP is a vision-language model that can converse about input images.<br>
This model is an LVLM model trained using [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) as the image encoder and [llm-jp/llm-jp-1.3b-v1.0](https://huggingface.co/llm-jp/llm-jp-1.3b-v1.0) as the text decoder. supports the input of 768 x 768 high resolution images by scaling_on_scales method. 

**Training:**

This model was initially trained with the Vision Projector using LLaVA-Pretrain-JA.<br>
In the second phase, it was fine-tuned with LLaVA-v1.5-Instruct-620K-JA.

resources for more information: https://github.com/tosiyuki/LLaVA-JP/tree/main

**Comparing VLMs**
|Model|JA-VG-VQA-500<br>(ROUGE-L)|JA-VLM-Bench-In-the-Wild<br>(ROUGE-L)|Heron-Bench(Detail)|Heron-Bench(Conv)|Heron-Bench(Complex)|Heron-Bench(Average)
|-|-|-|-|-|-|-|
|[Japanese Stable VLM](https://huggingface.co/stabilityai/japanese-stable-vlm)|-|40.50|25.15|51.23|37.84|38.07|
|[EvoVLM-JP-v1-7B](https://huggingface.co/SakanaAI/EvoVLM-JP-v1-7B)|**19.70**|**51.25**|50.31|44.42|40.47|45.07|
|[Heron BLIP Japanese StableLM Base 7B llava-620k](https://huggingface.co/turing-motors/heron-chat-blip-ja-stablelm-base-7b-v1-llava-620k)|14.51|33.26|49.09|41.51|45.72|45.44|
|[Heron GIT Japanese StableLM Base 7B](https://huggingface.co/turing-motors/heron-chat-git-ja-stablelm-base-7b-v1)|15.18|37.82|42.77|**54.20**|43.53|46.83|
|[llava-jp-1.3b-v1.0-620k](https://huggingface.co/toshi456/llava-jp-1.3b-v1.0-620k)|12.69|44.58|**51.21**|41.05|45.95|44.84|
|[llava-jp-1.3b-v1.1](https://huggingface.co/toshi456/llava-jp-1.3b-v1.1)|13.33|44.40|50.00|51.83|**48.98**|**50.39**|

![image/png](https://cdn-uploads.huggingface.co/production/uploads/630af71ffaaea618ebc973db/rnzCN-LFpK4iDL5RZ9oyI.png)

## How to use the model
**1. Download dependencies**
```
git clone https://github.com/tosiyuki/LLaVA-JP.git
```

**2. Inference**
```python
import requests
import torch
import transformers
from PIL import Image

from transformers.generation.streamers import TextStreamer
from llava.constants import DEFAULT_IMAGE_TOKEN, IMAGE_TOKEN_INDEX
from llava.conversation import conv_templates, SeparatorStyle
from llava.model.llava_gpt2 import LlavaGpt2ForCausalLM
from llava.train.arguments_dataclass import ModelArguments, DataArguments, TrainingArguments
from llava.train.dataset import tokenizer_image_token


if __name__ == "__main__":
    model_path = 'toshi456/llava-jp-1.3b-v1.1'
    device = "cuda" if torch.cuda.is_available() else "cpu"
    torch_dtype = torch.bfloat16 if device=="cuda" else torch.float32

    model = LlavaGpt2ForCausalLM.from_pretrained(
        model_path, 
        low_cpu_mem_usage=True,
        use_safetensors=True,
        torch_dtype=torch_dtype,
        device_map=device,
    )
    tokenizer = transformers.AutoTokenizer.from_pretrained(
        model_path,
        model_max_length=1532,
        padding_side="right",
        use_fast=False,
    )
    model.eval()

    conv_mode = "v1"
    conv = conv_templates[conv_mode].copy()

    # image pre-process
    image_url = "https://huggingface.co/rinna/bilingual-gpt-neox-4b-minigpt4/resolve/main/sample.jpg"
    image = Image.open(requests.get(image_url, stream=True).raw).convert('RGB')
    
    image_size = model.get_model().vision_tower.image_processor.size["height"]
    if model.get_model().vision_tower.scales is not None:
        image_size = model.get_model().vision_tower.image_processor.size["height"] * len(model.get_model().vision_tower.scales)
    
    if device == "cuda":
        image_tensor = model.get_model().vision_tower.image_processor(
            image, 
            return_tensors='pt', 
            size={"height": image_size, "width": image_size}
        )['pixel_values'].half().cuda().to(torch_dtype)
    else:
        image_tensor = model.get_model().vision_tower.image_processor(
            image, 
            return_tensors='pt', 
            size={"height": image_size, "width": image_size}
        )['pixel_values'].to(torch_dtype)

    # create prompt
    # ユーザー: <image>\n{prompt}
    prompt = "猫の隣には何がありますか?"
    inp = DEFAULT_IMAGE_TOKEN + '\n' + prompt
    conv.append_message(conv.roles[0], inp)
    conv.append_message(conv.roles[1], None)
    prompt = conv.get_prompt()

    input_ids = tokenizer_image_token(
        prompt, 
        tokenizer, 
        IMAGE_TOKEN_INDEX, 
        return_tensors='pt'
    ).unsqueeze(0)
    if device == "cuda":
        input_ids = input_ids.to(device)

    input_ids = input_ids[:, :-1] # </sep>がinputの最後に入るので削除する
    stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2
    keywords = [stop_str]
    streamer = TextStreamer(tokenizer, skip_prompt=True, timeout=20.0)

    # predict
    with torch.inference_mode():
        model.generate(
            inputs=input_ids,
            images=image_tensor,
            do_sample=True,
            temperature=0.1,
            top_p=1.0,
            max_new_tokens=256,
            streamer=streamer,
            use_cache=True,
        )
    """猫の隣にはノートパソコンがあります。"""

```

## Training dataset
**Stage1 Pretrain**
- [LLaVA-Pretrain-JA](https://huggingface.co/datasets/turing-motors/LLaVA-Pretrain-JA)

**Stage2 Fine-tuning**
- [LLaVA-v1.5-Instruct-620K-JA](https://huggingface.co/datasets/turing-motors/LLaVA-v1.5-Instruct-620K-JA)

## Acknowledgement
- [LLaVA](https://llava-vl.github.io/)
- [LLM-jp](https://llm-jp.nii.ac.jp/)
- [scaling_on_scales](https://github.com/bfshi/scaling_on_scales/tree/master)

## License
cc-by-nc-4.0