Thao Pham
commited on
Commit
·
664c81e
1
Parent(s):
97bb53e
Adding app.py and pipeline.py, changed code structure
Browse files- .gitignore +2 -0
- app.py +70 -0
- keybertvi_model.py +72 -0
- model.py +0 -58
- keyword_extraction.py → model/keyword_extraction_utils.py +27 -117
- named_entities.py → model/named_entities.py +0 -2
- process_text.py → model/process_text.py +1 -8
- pipeline.py +134 -0
- requirements.txt +3 -0
- vietnamese-stopwords-dash.txt +11 -3
.gitignore
CHANGED
@@ -1,2 +1,4 @@
|
|
1 |
venv
|
2 |
test_file.txt
|
|
|
|
|
|
1 |
venv
|
2 |
test_file.txt
|
3 |
+
scrap.py
|
4 |
+
|
app.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import os
|
4 |
+
|
5 |
+
from pipeline import KeywordExtractorPipeline
|
6 |
+
|
7 |
+
DIR_PATH = os.path.dirname(os.path.realpath(__file__))
|
8 |
+
|
9 |
+
|
10 |
+
def extract_keyword(title, text, top_n, ngram_low_range, ngram_high_range, min_freq, diversify_result):
|
11 |
+
inp = {"text": text, "title": title}
|
12 |
+
keyword_ls = kw_pipeline(inputs=inp, min_freq=min_freq, ngram_n=(ngram_low_range, ngram_high_range),
|
13 |
+
top_n=top_n, diversify_result=diversify_result)
|
14 |
+
result = ''
|
15 |
+
for kw, score in keyword_ls:
|
16 |
+
result += f'{kw}: {score}\n'
|
17 |
+
return result
|
18 |
+
|
19 |
+
|
20 |
+
if gr.NO_RELOAD:
|
21 |
+
print("Loading PhoBERT model")
|
22 |
+
phobert = torch.load(f'{DIR_PATH}/pretrained-models/phobert.pt')
|
23 |
+
phobert.eval()
|
24 |
+
|
25 |
+
print("Loading NER model")
|
26 |
+
ner_model = torch.load(f'{DIR_PATH}/pretrained-models/ner-vietnamese-electra-base.pt')
|
27 |
+
ner_model.eval()
|
28 |
+
kw_pipeline = KeywordExtractorPipeline(phobert, ner_model)
|
29 |
+
|
30 |
+
if __name__ == "__main__":
|
31 |
+
demo = gr.Interface(fn=extract_keyword,
|
32 |
+
inputs=[
|
33 |
+
gr.Text(
|
34 |
+
label="Title",
|
35 |
+
lines=1,
|
36 |
+
value="Enter title here",
|
37 |
+
),
|
38 |
+
gr.Textbox(
|
39 |
+
label="Text",
|
40 |
+
lines=5,
|
41 |
+
value="Enter text here",
|
42 |
+
),
|
43 |
+
gr.Number(
|
44 |
+
label="Top N keywords",
|
45 |
+
info="Number of keywords retrieved",
|
46 |
+
value=10
|
47 |
+
),
|
48 |
+
gr.Number(
|
49 |
+
label="Ngram low range",
|
50 |
+
value=1
|
51 |
+
),
|
52 |
+
gr.Number(
|
53 |
+
label="Ngram high range",
|
54 |
+
value=3
|
55 |
+
),
|
56 |
+
gr.Number(
|
57 |
+
label="Ngram minimum frequency",
|
58 |
+
value=1
|
59 |
+
),
|
60 |
+
gr.Checkbox(
|
61 |
+
label="Diversify result"
|
62 |
+
)
|
63 |
+
],
|
64 |
+
# inputs=["text", "textbox", "number", "number", "number", "number", "checkbox"],
|
65 |
+
outputs=gr.Textbox(
|
66 |
+
label="Keywords Extracted",
|
67 |
+
)
|
68 |
+
)
|
69 |
+
|
70 |
+
demo.launch(share=True) # Share your demo with just 1 extra parameter 🚀
|
keybertvi_model.py
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# import py_vncorenlp
|
2 |
+
# from transformers import AutoTokenizer, pipeline
|
3 |
+
# import torch
|
4 |
+
# import os
|
5 |
+
# from model.keyword_extraction_utils import extract_keywords
|
6 |
+
#
|
7 |
+
#
|
8 |
+
# class KeyBERTVi:
|
9 |
+
#
|
10 |
+
# def __init__(self, stopwords_file_path=None):
|
11 |
+
# self.annotator = py_vncorenlp.VnCoreNLP(annotators=["wseg", "pos"],
|
12 |
+
# save_dir=f'{dir_path}/pretrained-models/vncorenlp')
|
13 |
+
# # model = py_vncorenlp.VnCoreNLP(save_dir='/absolute/path/to/vncorenlp')
|
14 |
+
# print("Loading PhoBERT model")
|
15 |
+
# self.phobert_tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base-v2")
|
16 |
+
#
|
17 |
+
# # use absolute path because torch is cached
|
18 |
+
# self.phobert = torch.load(f'{dir_path}/pretrained-models/phobert.pt')
|
19 |
+
# self.phobert.eval()
|
20 |
+
#
|
21 |
+
# print("Loading NER model")
|
22 |
+
# ner_tokenizer = AutoTokenizer.from_pretrained("NlpHUST/ner-vietnamese-electra-base")
|
23 |
+
# ner_model = torch.load(f'{dir_path}/pretrained-models/ner-vietnamese-electra-base.pt')
|
24 |
+
# ner_model.eval()
|
25 |
+
# self.ner_pipeline = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer)
|
26 |
+
#
|
27 |
+
# if stopwords_file_path is None:
|
28 |
+
# stopwords_file_path = f'{dir_path}/vietnamese-stopwords-dash.txt'
|
29 |
+
# with open(stopwords_file_path) as f:
|
30 |
+
# self.stopwords = [w.strip() for w in f.readlines()]
|
31 |
+
#
|
32 |
+
# def extract_keywords(self, title, text, ngram_range=(1, 3), top_n=5, use_kmeans=False, use_mmr=False, min_freq=1):
|
33 |
+
# keyword_ls = extract_keywords(text, title,
|
34 |
+
# self.ner_pipeline,
|
35 |
+
# self.annotator,
|
36 |
+
# self.phobert_tokenizer,
|
37 |
+
# self.phobert,
|
38 |
+
# self.stopwords,
|
39 |
+
# ngram_n=ngram_range,
|
40 |
+
# top_n=top_n,
|
41 |
+
# use_kmeans=use_kmeans,
|
42 |
+
# use_mmr=use_mmr,
|
43 |
+
# min_freq=min_freq)
|
44 |
+
# return keyword_ls
|
45 |
+
#
|
46 |
+
# def highlight(self, text, keywords):
|
47 |
+
# kw_ls = [' '.join(kw.split('_')) for kw, score in keywords]
|
48 |
+
# for key in kw_ls:
|
49 |
+
# text = text.replace(f" {key}", f" <mark>{key}</mark>")
|
50 |
+
# return text
|
51 |
+
#
|
52 |
+
#
|
53 |
+
# dir_path = os.path.dirname(os.path.realpath(__file__))
|
54 |
+
# if __name__ == "__main__":
|
55 |
+
# # args
|
56 |
+
# # print(dir_path)
|
57 |
+
#
|
58 |
+
# stopwords_file_path = f'{dir_path}/vietnamese-stopwords-dash.txt'
|
59 |
+
#
|
60 |
+
# # text_file_path = sys.argv[1]
|
61 |
+
# # with open(f'{dir_path}/{text_file_path}', 'r') as f:
|
62 |
+
# # text = ' '.join([ln.strip() for ln in f.readlines()])
|
63 |
+
# # print(text)
|
64 |
+
#
|
65 |
+
# # kw_model = KeyBERTVi()
|
66 |
+
# # model_name_on_hub = "KeyBERTVi"
|
67 |
+
# # kw_model.save_pretrained(model_name_on_hub)
|
68 |
+
# # kw_model.phobert_tokenizer.save_pretrained(model_name_on_hub)
|
69 |
+
#
|
70 |
+
# # title = None
|
71 |
+
# # keyword_ls = kw_model.extract_keywords(title, text, ngram_range=(1, 3), top_n=5)
|
72 |
+
# # print(keyword_ls)
|
model.py
DELETED
@@ -1,58 +0,0 @@
|
|
1 |
-
import py_vncorenlp
|
2 |
-
from transformers import AutoTokenizer, pipeline
|
3 |
-
import torch
|
4 |
-
import os
|
5 |
-
from keyword_extraction import extract_keywords
|
6 |
-
import sys
|
7 |
-
|
8 |
-
|
9 |
-
class KeyBERTVi:
|
10 |
-
|
11 |
-
def __init__(self, stopwords_file_path):
|
12 |
-
self.annotator = py_vncorenlp.VnCoreNLP(annotators=["wseg", "pos"],
|
13 |
-
save_dir=f'{dir_path}/pretrained-models/vncorenlp')
|
14 |
-
# model = py_vncorenlp.VnCoreNLP(save_dir='/absolute/path/to/vncorenlp')
|
15 |
-
print("Loading PhoBERT model")
|
16 |
-
self.phobert_tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base-v2")
|
17 |
-
|
18 |
-
# use absolute path because torch is cached
|
19 |
-
self.phobert = torch.load(f'{dir_path}/pretrained-models/phobert.pt')
|
20 |
-
self.phobert.eval()
|
21 |
-
|
22 |
-
print("Loading NER model")
|
23 |
-
ner_tokenizer = AutoTokenizer.from_pretrained("NlpHUST/ner-vietnamese-electra-base")
|
24 |
-
ner_model = torch.load(f'{dir_path}/pretrained-models/ner-vietnamese-electra-base.pt')
|
25 |
-
ner_model.eval()
|
26 |
-
self.ner_pipeline = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer)
|
27 |
-
|
28 |
-
with open(stopwords_file_path) as f:
|
29 |
-
self.stopwords = [w.strip() for w in f.readlines()]
|
30 |
-
|
31 |
-
def extract_keywords(self, title, text, ngram_range=(1, 3), top_n=5):
|
32 |
-
keyword_ls = extract_keywords(text, title,
|
33 |
-
self.ner_pipeline,
|
34 |
-
self.annotator,
|
35 |
-
self.phobert_tokenizer,
|
36 |
-
self.phobert,
|
37 |
-
self.stopwords,
|
38 |
-
ngram_n=ngram_range,
|
39 |
-
top_n=top_n)
|
40 |
-
return keyword_ls
|
41 |
-
|
42 |
-
|
43 |
-
dir_path = os.path.dirname(os.path.realpath(__file__))
|
44 |
-
if __name__ == "__main__":
|
45 |
-
# args
|
46 |
-
# print(dir_path)
|
47 |
-
|
48 |
-
stopwords_file_path = f'{dir_path}/vietnamese-stopwords-dash.txt'
|
49 |
-
|
50 |
-
text_file_path = sys.argv[1]
|
51 |
-
with open(f'{dir_path}/{text_file_path}', 'r') as f:
|
52 |
-
text = ' '.join([ln.strip() for ln in f.readlines()])
|
53 |
-
# print(text)
|
54 |
-
|
55 |
-
kw_model = KeyBERTVi(stopwords_file_path)
|
56 |
-
title = None
|
57 |
-
keyword_ls = kw_model.extract_keywords(title, text, ngram_range=(1, 3), top_n=5)
|
58 |
-
print(keyword_ls)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
keyword_extraction.py → model/keyword_extraction_utils.py
RENAMED
@@ -2,13 +2,11 @@ from string import punctuation
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from sklearn.cluster import KMeans
|
5 |
-
from named_entities import get_named_entities
|
6 |
|
7 |
punctuation = [c for c in punctuation if c != "_"]
|
8 |
punctuation += ["“", "–", ",", "…", "”", "–"]
|
9 |
|
10 |
-
# with open('/Users/thaopham/bao-lao-dong-data/utils/vietnamese-stopwords-dash.txt') as f:
|
11 |
-
# stopwords = [w.strip() for w in f.readlines()]
|
12 |
|
13 |
ethnicity_dict_map = {"H'Mông": "HMông",
|
14 |
"H'mông": "HMông",
|
@@ -69,8 +67,8 @@ def compute_ngram_list(segmentised_doc, ngram_n, stopwords_ls, subsentences=True
|
|
69 |
ngram_list = []
|
70 |
for sentence in output_sub_sentences:
|
71 |
sent = sentence.split()
|
72 |
-
for i in range(len(sent) -
|
73 |
-
ngram = ' '.join(sent[i:i +
|
74 |
if ngram not in ngram_list and not check_for_stopwords(ngram, stopwords_ls):
|
75 |
ngram_list.append(ngram)
|
76 |
|
@@ -116,15 +114,11 @@ def get_segmentised_doc(nlp, rdrsegmenter, title, doc):
|
|
116 |
title = title.replace(i, j)
|
117 |
doc = doc.replace(i, j)
|
118 |
|
119 |
-
print(title)
|
120 |
-
# print(doc)
|
121 |
segmentised_doc = rdrsegmenter.word_segment(doc)
|
122 |
|
123 |
if title is not None:
|
124 |
segmentised_doc = rdrsegmenter.word_segment(title) + rdrsegmenter.word_segment(doc)
|
125 |
-
print(segmentised_doc)
|
126 |
ne_ls = set(get_named_entities(nlp, doc))
|
127 |
-
print(sorted(ne_ls))
|
128 |
|
129 |
segmentised_doc_ne = []
|
130 |
for sent in segmentised_doc:
|
@@ -150,13 +144,6 @@ def compute_ngram_embeddings(tokenizer, phobert, ngram_list):
|
|
150 |
return ngram_embeddings
|
151 |
|
152 |
|
153 |
-
def normalised_cosine_similarity(ngram_embedding, document_embedding):
|
154 |
-
similarity_score = cosine_similarity(ngram_embedding, document_embedding)
|
155 |
-
magnitude_ngram = np.linalg.norm(ngram_embedding)
|
156 |
-
magnitude_doc = np.linalg.norm(document_embedding)
|
157 |
-
return similarity_score / np.sqrt(magnitude_ngram * magnitude_doc)
|
158 |
-
|
159 |
-
|
160 |
def compute_ngram_similarity(ngram_list, ngram_embeddings, doc_embedding):
|
161 |
ngram_similarity_dict = {}
|
162 |
|
@@ -168,20 +155,7 @@ def compute_ngram_similarity(ngram_list, ngram_embeddings, doc_embedding):
|
|
168 |
return ngram_similarity_dict
|
169 |
|
170 |
|
171 |
-
|
172 |
-
# ngram_similarity_dict = {}
|
173 |
-
#
|
174 |
-
# for ngram in ngram_list:
|
175 |
-
# score = [cosine_similarity(ngram_embeddings[ngram], doc_embedding.T).flatten()[0]]
|
176 |
-
# for w in ngram.split():
|
177 |
-
# similarity_score = cosine_similarity(ngram_embeddings[w], doc_embedding.T).flatten()[0]
|
178 |
-
# score.append(similarity_score)
|
179 |
-
# ngram_similarity_dict[ngram] = np.mean(score)
|
180 |
-
#
|
181 |
-
# return ngram_similarity_dict
|
182 |
-
|
183 |
-
|
184 |
-
def diversify_result(ngram_result, ngram_embeddings, top_n=5):
|
185 |
best_ngrams = sorted(ngram_result, key=ngram_result.get, reverse=True)[:top_n * 4]
|
186 |
best_ngram_embeddings = np.array([ngram_embeddings[ngram] for ngram in best_ngrams]).squeeze()
|
187 |
vote = {}
|
@@ -208,36 +182,8 @@ def diversify_result(ngram_result, ngram_embeddings, top_n=5):
|
|
208 |
return diversify_result_ls[:top_n]
|
209 |
|
210 |
|
211 |
-
def mmr(ngram_result, ngram_embeddings, lambda_=0.7, top_n=5):
|
212 |
-
ngram_result = {key: ngram_result[key] for key in
|
213 |
-
sorted(ngram_result, key=ngram_result.get, reverse=True)[:top_n * 4]}
|
214 |
-
|
215 |
-
mmr_result = {}
|
216 |
-
for ngram1 in ngram_result:
|
217 |
-
similary_score_to_doc = ngram_result[ngram1]
|
218 |
-
max_sim = -1
|
219 |
-
# most_similar_ngram = None
|
220 |
-
for ngram2 in ngram_result:
|
221 |
-
if ngram2 != ngram1:
|
222 |
-
similarity_score_to_ngram = \
|
223 |
-
cosine_similarity(ngram_embeddings[ngram1], ngram_embeddings[ngram2].T).flatten()[0]
|
224 |
-
|
225 |
-
if ngram2.lower() == ngram1.lower():
|
226 |
-
similarity_score_to_ngram = 1
|
227 |
-
|
228 |
-
if similarity_score_to_ngram > max_sim:
|
229 |
-
max_sim = similarity_score_to_ngram
|
230 |
-
# most_similar_ngram = ngram2
|
231 |
-
# print(ngram1, most_similar_ngram, max_sim)
|
232 |
-
mmr_result[ngram1] = lambda_ * similary_score_to_doc - (1 - lambda_) * max_sim
|
233 |
-
|
234 |
-
mmr_result_ls = [(key, mmr_result[key]) for key in mmr_result]
|
235 |
-
mmr_result_ls = sorted(mmr_result_ls, key=lambda x: x[1], reverse=True)
|
236 |
-
return mmr_result_ls[:top_n]
|
237 |
-
|
238 |
-
|
239 |
def remove_duplicates(ngram_result):
|
240 |
-
to_remove =
|
241 |
for ngram in ngram_result:
|
242 |
|
243 |
for ngram2 in ngram_result:
|
@@ -245,7 +191,7 @@ def remove_duplicates(ngram_result):
|
|
245 |
new_score = np.mean([ngram_result[ngram], ngram_result[ngram2]])
|
246 |
|
247 |
ngram_result[ngram] = new_score
|
248 |
-
to_remove.
|
249 |
|
250 |
for ngram in to_remove:
|
251 |
ngram_result.pop(ngram)
|
@@ -257,9 +203,9 @@ def compute_filtered_text(annotator, title, text):
|
|
257 |
if title is not None:
|
258 |
annotated = annotator.annotate_text(title + '. ' + text)
|
259 |
filtered_sentences = []
|
260 |
-
|
261 |
-
keep_tags = ['N', 'Np', 'V']
|
262 |
for key in annotated.keys():
|
|
|
263 |
sent = ' '.join([dict_['wordForm'] for dict_ in annotated[key] if dict_['posTag'] in keep_tags])
|
264 |
filtered_sentences.append(sent)
|
265 |
return filtered_sentences
|
@@ -267,11 +213,9 @@ def compute_filtered_text(annotator, title, text):
|
|
267 |
|
268 |
def get_candidate_ngrams(segmentised_doc, filtered_segmentised_doc, ngram_n, stopwords_ls):
|
269 |
# get actual ngrams
|
270 |
-
# segmentised_doc = get_segmentised_doc(nlp, annotator, title, text)
|
271 |
actual_ngram_list = compute_ngram_list(segmentised_doc, ngram_n, stopwords_ls, subsentences=True)
|
272 |
|
273 |
# get filtered ngrams
|
274 |
-
# filtered_segmentised_doc = compute_filtered_text(annotator, title, text)
|
275 |
filtered_ngram_list = compute_ngram_list(filtered_segmentised_doc, ngram_n, stopwords_ls,
|
276 |
subsentences=False)
|
277 |
|
@@ -280,71 +224,37 @@ def get_candidate_ngrams(segmentised_doc, filtered_segmentised_doc, ngram_n, sto
|
|
280 |
return candidate_ngram
|
281 |
|
282 |
|
283 |
-
def
|
284 |
ngram_dict_freq = {}
|
285 |
for ngram in ngram_list:
|
286 |
ngram_n = len(ngram.split())
|
287 |
count = 0
|
288 |
for sentence in doc_segmentised:
|
289 |
sent = sentence.split()
|
|
|
290 |
for i in range(len(sent) - ngram_n + 1):
|
291 |
pair = ' '.join(sent[i:i + ngram_n])
|
|
|
292 |
if pair == ngram:
|
293 |
count += 1
|
294 |
-
|
|
|
295 |
ngram_dict_freq[ngram] = count
|
296 |
|
297 |
return ngram_dict_freq
|
298 |
|
299 |
|
300 |
-
def
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
# print(
|
311 |
-
|
312 |
-
|
313 |
-
ngram_list
|
314 |
-
for n in range(ngram_low, ngram_high + 1):
|
315 |
-
# ngram_list += compute_ngram_list(segmentised_doc=doc_segmentised, ngram_n=n, stopwords_ls=stopwords)
|
316 |
-
# ngram_list.update(compute_ngram_list(segmentised_doc=doc_segmentised, ngram_n=n, stopwords_ls=stopwords))
|
317 |
-
ngram_list.update(get_candidate_ngrams(doc_segmentised, filtered_doc_segmentised, n, stopwords_ls))
|
318 |
-
ngram_list.update([annotator.word_segment(ne)[0] for ne in ne_ls])
|
319 |
-
|
320 |
-
print(len(ngram_list))
|
321 |
-
ngram_list = get_ngram_frequencies(doc_segmentised, ngram_list)
|
322 |
-
print(len(ngram_list))
|
323 |
-
# print(sorted(ngram_list))
|
324 |
-
|
325 |
-
print("Generate ngram embeddings")
|
326 |
-
ngram_embeddings = compute_ngram_embeddings(tokenizer, phobert, ngram_list)
|
327 |
-
|
328 |
-
print("Generate document embeddings")
|
329 |
-
doc_embedding = get_doc_embeddings(filtered_doc_segmentised, tokenizer, phobert, stopwords_ls)
|
330 |
-
|
331 |
-
ngram_result = compute_ngram_similarity(ngram_list, ngram_embeddings, doc_embedding)
|
332 |
-
ngram_result = remove_duplicates(ngram_result)
|
333 |
-
non_diversified = sorted([(ngram, ngram_result[ngram]) for ngram in ngram_result],
|
334 |
-
key=lambda x: x[1], reverse=True)[:top_n]
|
335 |
-
|
336 |
-
# Diversify result
|
337 |
-
if use_kmeans:
|
338 |
-
diversified_kw_kmeans = diversify_result(ngram_result, ngram_embeddings, top_n=top_n)
|
339 |
-
return diversified_kw_kmeans
|
340 |
-
|
341 |
-
if use_mmr:
|
342 |
-
diversified_kw_mmr = mmr(ngram_result, ngram_embeddings, lambda_=0.85, top_n=top_n)
|
343 |
-
return diversified_kw_mmr
|
344 |
-
return non_diversified
|
345 |
-
|
346 |
-
|
347 |
-
def highlight(text, keywords):
|
348 |
-
for key in keywords:
|
349 |
-
text = text.replace(f" {key}", f" <mark>{key}</mark>")
|
350 |
-
return text
|
|
|
2 |
import numpy as np
|
3 |
import torch
|
4 |
from sklearn.cluster import KMeans
|
5 |
+
from model.named_entities import get_named_entities
|
6 |
|
7 |
punctuation = [c for c in punctuation if c != "_"]
|
8 |
punctuation += ["“", "–", ",", "…", "”", "–"]
|
9 |
|
|
|
|
|
10 |
|
11 |
ethnicity_dict_map = {"H'Mông": "HMông",
|
12 |
"H'mông": "HMông",
|
|
|
67 |
ngram_list = []
|
68 |
for sentence in output_sub_sentences:
|
69 |
sent = sentence.split()
|
70 |
+
for i in range(len(sent) - ngram_n + 1):
|
71 |
+
ngram = ' '.join(sent[i:i + ngram_n])
|
72 |
if ngram not in ngram_list and not check_for_stopwords(ngram, stopwords_ls):
|
73 |
ngram_list.append(ngram)
|
74 |
|
|
|
114 |
title = title.replace(i, j)
|
115 |
doc = doc.replace(i, j)
|
116 |
|
|
|
|
|
117 |
segmentised_doc = rdrsegmenter.word_segment(doc)
|
118 |
|
119 |
if title is not None:
|
120 |
segmentised_doc = rdrsegmenter.word_segment(title) + rdrsegmenter.word_segment(doc)
|
|
|
121 |
ne_ls = set(get_named_entities(nlp, doc))
|
|
|
122 |
|
123 |
segmentised_doc_ne = []
|
124 |
for sent in segmentised_doc:
|
|
|
144 |
return ngram_embeddings
|
145 |
|
146 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
def compute_ngram_similarity(ngram_list, ngram_embeddings, doc_embedding):
|
148 |
ngram_similarity_dict = {}
|
149 |
|
|
|
155 |
return ngram_similarity_dict
|
156 |
|
157 |
|
158 |
+
def diversify_result_kmeans(ngram_result, ngram_embeddings, top_n=5):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
best_ngrams = sorted(ngram_result, key=ngram_result.get, reverse=True)[:top_n * 4]
|
160 |
best_ngram_embeddings = np.array([ngram_embeddings[ngram] for ngram in best_ngrams]).squeeze()
|
161 |
vote = {}
|
|
|
182 |
return diversify_result_ls[:top_n]
|
183 |
|
184 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
185 |
def remove_duplicates(ngram_result):
|
186 |
+
to_remove = set()
|
187 |
for ngram in ngram_result:
|
188 |
|
189 |
for ngram2 in ngram_result:
|
|
|
191 |
new_score = np.mean([ngram_result[ngram], ngram_result[ngram2]])
|
192 |
|
193 |
ngram_result[ngram] = new_score
|
194 |
+
to_remove.add(ngram2)
|
195 |
|
196 |
for ngram in to_remove:
|
197 |
ngram_result.pop(ngram)
|
|
|
203 |
if title is not None:
|
204 |
annotated = annotator.annotate_text(title + '. ' + text)
|
205 |
filtered_sentences = []
|
206 |
+
keep_tags = ['N', 'Np', 'V', 'Nc']
|
|
|
207 |
for key in annotated.keys():
|
208 |
+
# print(key,annotated[key])
|
209 |
sent = ' '.join([dict_['wordForm'] for dict_ in annotated[key] if dict_['posTag'] in keep_tags])
|
210 |
filtered_sentences.append(sent)
|
211 |
return filtered_sentences
|
|
|
213 |
|
214 |
def get_candidate_ngrams(segmentised_doc, filtered_segmentised_doc, ngram_n, stopwords_ls):
|
215 |
# get actual ngrams
|
|
|
216 |
actual_ngram_list = compute_ngram_list(segmentised_doc, ngram_n, stopwords_ls, subsentences=True)
|
217 |
|
218 |
# get filtered ngrams
|
|
|
219 |
filtered_ngram_list = compute_ngram_list(filtered_segmentised_doc, ngram_n, stopwords_ls,
|
220 |
subsentences=False)
|
221 |
|
|
|
224 |
return candidate_ngram
|
225 |
|
226 |
|
227 |
+
def limit_minimum_frequency(doc_segmentised, ngram_list, min_freq=1):
|
228 |
ngram_dict_freq = {}
|
229 |
for ngram in ngram_list:
|
230 |
ngram_n = len(ngram.split())
|
231 |
count = 0
|
232 |
for sentence in doc_segmentised:
|
233 |
sent = sentence.split()
|
234 |
+
# print(sent)
|
235 |
for i in range(len(sent) - ngram_n + 1):
|
236 |
pair = ' '.join(sent[i:i + ngram_n])
|
237 |
+
# print(pair, ngram)
|
238 |
if pair == ngram:
|
239 |
count += 1
|
240 |
+
# print(ngram, count)
|
241 |
+
if count >= min_freq:
|
242 |
ngram_dict_freq[ngram] = count
|
243 |
|
244 |
return ngram_dict_freq
|
245 |
|
246 |
|
247 |
+
def remove_overlapping_ngrams(ngram_list):
|
248 |
+
to_remove = set()
|
249 |
+
for ngram1 in ngram_list:
|
250 |
+
for ngram2 in ngram_list:
|
251 |
+
if len(ngram1.split()) > len(ngram2.split()) and (ngram1.startswith(ngram2) or ngram1.endswith(ngram2)):
|
252 |
+
# print(ngram1, ngram2)
|
253 |
+
# print()
|
254 |
+
to_remove.add(ngram2)
|
255 |
+
|
256 |
+
# print("To removed")
|
257 |
+
# print(to_remove)
|
258 |
+
for kw in to_remove:
|
259 |
+
ngram_list.remove(kw)
|
260 |
+
return ngram_list
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
named_entities.py → model/named_entities.py
RENAMED
@@ -1,6 +1,4 @@
|
|
1 |
-
# from transformers import AutoModelForTokenClassification, AutoTokenizer, pipeline
|
2 |
from underthesea import sent_tokenize
|
3 |
-
import torch
|
4 |
|
5 |
|
6 |
def substring(w, ls):
|
|
|
|
|
1 |
from underthesea import sent_tokenize
|
|
|
2 |
|
3 |
|
4 |
def substring(w, ls):
|
process_text.py → model/process_text.py
RENAMED
@@ -1,8 +1,7 @@
|
|
1 |
from string import punctuation
|
2 |
-
import re
|
3 |
|
4 |
|
5 |
-
def
|
6 |
full_text_processed = replace_all(text.strip())
|
7 |
|
8 |
while '\n\n' in full_text_processed:
|
@@ -10,12 +9,6 @@ def process_article_content(text):
|
|
10 |
|
11 |
full_text_processed = process_sticking_sentences(full_text_processed)
|
12 |
|
13 |
-
pattern = "Ảnh: [A-ZĐÀÁÂÃÈÉÊẾÌÍÒÓÔÕÙÚĂĐĨŨƠƯĂẠẢẤẦẨẪẬẮẰẲẴẶẸẺẼỀỂỄỆỈỊỌỎỐỒỔỖỘỚỜỞỠỢỤỦỨỪỬỮỰỲỴÝỶỸa-zđ][a-zàáâãèéêếìíòóôõùúăđĩũơưăạảấầẩẫậắằẳẵặẹẻẽềểễệỉịọỏốồổỗộớờởỡợụủứừửữựỳỵỷỹ]+ [A-ZĐÀÁÂÃÈÉÊẾÌÍÒÓÔÕÙÚĂĐĨŨƠƯĂẠẢẤẦẨẪẬẮẰẲẴẶẸẺẼỀỂỄỆỈỊỌỎỐỒỔỖỘỚỜỞỠỢỤỦỨỪỬỮỰỲỴÝỶỸa-zđ][a-zàáâãèéêếìíòóôõùúăđĩũơưăạảấầẩẫậắằẳẵặẹẻẽềểễệỉịọỏốồổỗộớờởỡợụủứừửữựỳỵỷỹ]+\.?"
|
14 |
-
full_text_processed = re.sub(pattern, '', full_text_processed)
|
15 |
-
|
16 |
-
pattern = "Ảnh: [A-ZĐÀÁÂÃÈÉÊẾÌÍÒÓÔÕÙÚĂĐĨŨƠƯĂẠẢẤẦẨẪẬẮẰẲẴẶẸẺẼỀỂỄỆỈỊỌỎỐỒỔỖỘỚỜỞỠỢỤỦỨỪỬỮỰỲỴÝỶỸ]+\.?"
|
17 |
-
full_text_processed = re.sub(pattern, '', full_text_processed)
|
18 |
-
|
19 |
while ' ' in full_text_processed:
|
20 |
full_text_processed = full_text_processed.replace(' ', ' ')
|
21 |
return full_text_processed
|
|
|
1 |
from string import punctuation
|
|
|
2 |
|
3 |
|
4 |
+
def process_text_pipeline(text):
|
5 |
full_text_processed = replace_all(text.strip())
|
6 |
|
7 |
while '\n\n' in full_text_processed:
|
|
|
9 |
|
10 |
full_text_processed = process_sticking_sentences(full_text_processed)
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
while ' ' in full_text_processed:
|
13 |
full_text_processed = full_text_processed.replace(' ', ' ')
|
14 |
return full_text_processed
|
pipeline.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import py_vncorenlp
|
2 |
+
from transformers import AutoTokenizer, Pipeline, pipeline
|
3 |
+
import os
|
4 |
+
|
5 |
+
from model.keyword_extraction_utils import *
|
6 |
+
from model.process_text import process_text_pipeline
|
7 |
+
|
8 |
+
dir_path = os.path.dirname(os.path.realpath(__file__))
|
9 |
+
|
10 |
+
|
11 |
+
class KeywordExtractorPipeline(Pipeline):
|
12 |
+
def __init__(self, model, ner_model, **kwargs):
|
13 |
+
super().__init__(model, **kwargs)
|
14 |
+
self.annotator = py_vncorenlp.VnCoreNLP(annotators=["wseg", "pos"],
|
15 |
+
save_dir=f'{dir_path}/pretrained-models/vncorenlp')
|
16 |
+
|
17 |
+
print("Loading PhoBERT tokenizer")
|
18 |
+
self.phobert_tokenizer = AutoTokenizer.from_pretrained("vinai/phobert-base-v2")
|
19 |
+
self.phobert = model
|
20 |
+
|
21 |
+
print("Loading NER tokenizer")
|
22 |
+
ner_tokenizer = AutoTokenizer.from_pretrained("NlpHUST/ner-vietnamese-electra-base")
|
23 |
+
self.ner_pipeline = pipeline("ner", model=ner_model, tokenizer=ner_tokenizer)
|
24 |
+
|
25 |
+
stopwords_file_path = f'{dir_path}/vietnamese-stopwords-dash.txt'
|
26 |
+
with open(stopwords_file_path) as f:
|
27 |
+
self.stopwords = [w.strip() for w in f.readlines()]
|
28 |
+
|
29 |
+
def _sanitize_parameters(self, **kwargs):
|
30 |
+
preprocess_kwargs = {}
|
31 |
+
forward_kwargs = {}
|
32 |
+
postprocess_kwargs = {}
|
33 |
+
|
34 |
+
for possible_preprocess_kwarg in ["text", "title"]:
|
35 |
+
if possible_preprocess_kwarg in kwargs:
|
36 |
+
preprocess_kwargs[possible_preprocess_kwarg] = kwargs[possible_preprocess_kwarg]
|
37 |
+
|
38 |
+
for possible_forward_kwarg in ["ngram_n", "min_freq"]:
|
39 |
+
if possible_forward_kwarg in kwargs:
|
40 |
+
forward_kwargs[possible_forward_kwarg] = kwargs[possible_forward_kwarg]
|
41 |
+
|
42 |
+
for possible_postprocess_kwarg in ["top_n", "diversify_result"]:
|
43 |
+
if possible_postprocess_kwarg in kwargs:
|
44 |
+
postprocess_kwargs[possible_postprocess_kwarg] = kwargs[possible_postprocess_kwarg]
|
45 |
+
|
46 |
+
return preprocess_kwargs, forward_kwargs, postprocess_kwargs
|
47 |
+
|
48 |
+
def preprocess(self, inputs):
|
49 |
+
title = None
|
50 |
+
if inputs['title']:
|
51 |
+
title = process_text_pipeline(inputs['title'])
|
52 |
+
text = process_text_pipeline(inputs['text'])
|
53 |
+
return {"text": text, "title": title}
|
54 |
+
|
55 |
+
def _forward(self, model_inputs, ngram_n, min_freq):
|
56 |
+
text = model_inputs['text']
|
57 |
+
title = model_inputs['title']
|
58 |
+
|
59 |
+
# Getting segmentised document
|
60 |
+
ne_ls, doc_segmentised = get_segmentised_doc(self.ner_pipeline, self.annotator, title, text)
|
61 |
+
filtered_doc_segmentised = compute_filtered_text(self.annotator, title, text)
|
62 |
+
|
63 |
+
doc_embedding = get_doc_embeddings(filtered_doc_segmentised, self.phobert_tokenizer, self.phobert,
|
64 |
+
self.stopwords)
|
65 |
+
|
66 |
+
ngram_list = self.generate_ngram_list(doc_segmentised, filtered_doc_segmentised, ne_ls, ngram_n, min_freq)
|
67 |
+
print("Final ngram list")
|
68 |
+
print(sorted(ngram_list))
|
69 |
+
|
70 |
+
ngram_embeddings = compute_ngram_embeddings(self.phobert_tokenizer, self.phobert, ngram_list)
|
71 |
+
|
72 |
+
return {"ngram_list": ngram_list, "ngram_embeddings": ngram_embeddings, "doc_embedding": doc_embedding}
|
73 |
+
|
74 |
+
def postprocess(self, model_outputs, top_n, diversify_result):
|
75 |
+
ngram_list = model_outputs['ngram_list']
|
76 |
+
ngram_embeddings = model_outputs['ngram_embeddings']
|
77 |
+
doc_embedding = model_outputs['doc_embedding']
|
78 |
+
|
79 |
+
ngram_result = self.extract_keywords(doc_embedding, ngram_list, ngram_embeddings)
|
80 |
+
non_diversified = sorted([(ngram, ngram_result[ngram]) for ngram in ngram_result],
|
81 |
+
key=lambda x: x[1], reverse=True)[:top_n]
|
82 |
+
|
83 |
+
if diversify_result:
|
84 |
+
return diversify_result_kmeans(ngram_result, ngram_embeddings, top_n=top_n)
|
85 |
+
return non_diversified
|
86 |
+
|
87 |
+
def generate_ngram_list(self, doc_segmentised, filtered_doc_segmentised, ne_ls, ngram_n, min_freq):
|
88 |
+
ngram_low, ngram_high = ngram_n
|
89 |
+
|
90 |
+
# Adding ngram
|
91 |
+
ngram_list = set()
|
92 |
+
for n in range(ngram_low, ngram_high + 1):
|
93 |
+
ngram_list.update(get_candidate_ngrams(doc_segmentised, filtered_doc_segmentised, n, self.stopwords))
|
94 |
+
|
95 |
+
# print(sorted(ngram_list))
|
96 |
+
# Adding named entities ngram list
|
97 |
+
ne_ls_segmented = [self.annotator.word_segment(ne)[0] for ne in ne_ls]
|
98 |
+
print("Named Entities list")
|
99 |
+
print(ne_ls_segmented)
|
100 |
+
ngram_list.update(ne_ls_segmented)
|
101 |
+
|
102 |
+
# print(sorted(ngram_list))
|
103 |
+
# Removing overlapping ngrams
|
104 |
+
ngram_list = remove_overlapping_ngrams(ngram_list)
|
105 |
+
# print("Removed overlapping ngrams")
|
106 |
+
# print(sorted(ngram_list))
|
107 |
+
|
108 |
+
# Limit ngrams by minimum frequency
|
109 |
+
if min_freq > 1:
|
110 |
+
ngram_list = limit_minimum_frequency(doc_segmentised, ngram_list, min_freq=min_freq)
|
111 |
+
return ngram_list.keys()
|
112 |
+
|
113 |
+
return ngram_list
|
114 |
+
|
115 |
+
def extract_keywords(self, doc_embedding, ngram_list, ngram_embeddings):
|
116 |
+
ngram_result = compute_ngram_similarity(ngram_list, ngram_embeddings, doc_embedding)
|
117 |
+
ngram_result = remove_duplicates(ngram_result)
|
118 |
+
return ngram_result
|
119 |
+
|
120 |
+
|
121 |
+
if __name__ == "__main__":
|
122 |
+
phobert = torch.load(f'{dir_path}/pretrained-models/phobert.pt')
|
123 |
+
phobert.eval()
|
124 |
+
ner_model = torch.load(f'{dir_path}/pretrained-models/ner-vietnamese-electra-base.pt')
|
125 |
+
ner_model.eval()
|
126 |
+
kw_pipeline = KeywordExtractorPipeline(phobert, ner_model)
|
127 |
+
|
128 |
+
text_file_path = f'{dir_path}/test_file.txt'
|
129 |
+
with open(text_file_path, 'r') as f:
|
130 |
+
text = ' '.join([ln.strip() for ln in f.readlines()])
|
131 |
+
|
132 |
+
inp = {"text": text, "title": None}
|
133 |
+
kws = kw_pipeline(inputs=inp, min_freq=1, ngram_n=(1, 3), top_n=5, diversify_result=False)
|
134 |
+
print(kws)
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
py_vncorenlp
|
3 |
+
transformers
|
vietnamese-stopwords-dash.txt
CHANGED
@@ -868,7 +868,6 @@ ngày_xửa
|
|
868 |
ngày_đến
|
869 |
ngày_ấy
|
870 |
ngôi
|
871 |
-
ngôi_nhà
|
872 |
ngôi_thứ
|
873 |
ngõ_hầu
|
874 |
ngăn_ngắt
|
@@ -1031,7 +1030,6 @@ năm
|
|
1031 |
năm_tháng
|
1032 |
nơi
|
1033 |
nơi_nơi
|
1034 |
-
nước
|
1035 |
nước_bài
|
1036 |
nước_cùng
|
1037 |
nước_lên
|
@@ -1987,4 +1985,14 @@ Nhờ
|
|
1987 |
Hiện
|
1988 |
Hiện_tại
|
1989 |
hiện
|
1990 |
-
cạnh
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
868 |
ngày_đến
|
869 |
ngày_ấy
|
870 |
ngôi
|
|
|
871 |
ngôi_thứ
|
872 |
ngõ_hầu
|
873 |
ngăn_ngắt
|
|
|
1030 |
năm_tháng
|
1031 |
nơi
|
1032 |
nơi_nơi
|
|
|
1033 |
nước_bài
|
1034 |
nước_cùng
|
1035 |
nước_lên
|
|
|
1985 |
Hiện
|
1986 |
Hiện_tại
|
1987 |
hiện
|
1988 |
+
cạnh
|
1989 |
+
Xung_quanh
|
1990 |
+
tóm_lại
|
1991 |
+
Cho
|
1992 |
+
Sau_này
|
1993 |
+
Vào
|
1994 |
+
ngày_nay
|
1995 |
+
chung_quanh
|
1996 |
+
Qua
|
1997 |
+
Thông_qua
|
1998 |
+
bao_gồm
|