File size: 2,551 Bytes
2785f89 4f846cf 2785f89 4f846cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 |
---
license: apache-2.0
base_model: h2oai/h2o-danube2-1.8b-base
datasets:
- ajibawa-2023/Code-290k-ShareGPT
language:
- en
library_name: transformers
tags:
- llama-factory
- unsloth
---
# h2o-danube2 with ChatML template
This model was first fine-tuned with [BAdam](https://arxiv.org/abs/2404.02827 "BAdam: A Memory Efficient Full Parameter Optimization Method for Large Language Models") on [ajibawa-2023/Code-290k-ShareGPT](https://huggingface.co/datasets/ajibawa-2023/Code-290k-ShareGPT) using LLama-Factory.
## Template
```jinja
<|im_start|>system
You are a helpful coding assistant.<|im_end|>
<|im_start|>user
{{instruction}}<|im_end|>
<|im_start|>assistant
{{response}}<|im_end|>
```
### BAdam config
```yaml
### model
model_name_or_path: danube2-base-chatml
### method
stage: sft
do_train: true
finetuning_type: full
use_badam: true
badam_switch_mode: ascending
badam_switch_interval: 50
badam_verbose: 1
badam_start_block: 8
seed: 8
### dataset
dataset: code_290k
template: hermes_chatml
cutoff_len: 8192
overwrite_cache: false
preprocessing_num_workers: 12
### output
output_dir: code-290k-chatml-badam
logging_steps: 5
save_steps: 1
save_strategy: epoch
plot_loss: true
overwrite_output_dir: false
### train
per_device_train_batch_size: 2
gradient_accumulation_steps: 8
learning_rate: 0.00001
num_train_epochs: 1
lr_scheduler_type: constant_with_warmup
warmup_ratio: 0.01
bf16: true
flash_attn: fa2
### eval
val_size: 0.01
per_device_eval_batch_size: 1
eval_strategy: steps
eval_steps: 1000
```
### BAdam training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 0.7404 | 0.0559 | 1000 | 0.7784 |
| 0.7858 | 0.1118 | 2000 | 0.7702 |
| 0.7274 | 0.1677 | 3000 | 0.7604 |
| 0.6956 | 0.2236 | 4000 | 0.7570 |
| 0.7711 | 0.2795 | 5000 | 0.7541 |
| 0.7643 | 0.3354 | 6000 | 0.7518 |
| 0.8255 | 0.3913 | 7000 | 0.7496 |
| 0.7456 | 0.4472 | 8000 | 0.7483 |
| 0.7718 | 0.5031 | 9000 | 0.7447 |
| 0.6693 | 0.5590 | 10000 | 0.7445 |
| 0.7409 | 0.6149 | 11000 | 0.7433 |
| 0.7319 | 0.6709 | 12000 | 0.7424 |
| 0.7636 | 0.7268 | 13000 | 0.7415 |
| 0.7504 | 0.7827 | 14000 | 0.7414 |
| 0.7735 | 0.8386 | 15000 | 0.7374 |
| 0.7438 | 0.8945 | 16000 | 0.7375 |
| 0.839 | 0.9504 | 17000 | 0.7373 |
|