File size: 20,552 Bytes
46619e2 07155e5 46619e2 07155e5 46619e2 07155e5 46619e2 07155e5 46619e2 07155e5 46619e2 07155e5 46619e2 07155e5 46619e2 07155e5 46619e2 07155e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 |
"""
Hugging Face compatible implementation of Open-MAGVIt2
Code reference: https://github.com/TencentARC/Open-MAGVIT2
"""
from math import log2, ceil
from collections import namedtuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange, reduce, pack, unpack
from torch import einsum
from torch.nn import Module
from transformers import PreTrainedModel
from .configuration_lfq_tokenizer import LFQTokenizerConfig
def swish(x):
# swish
return x * torch.sigmoid(x)
class ResBlock(nn.Module):
def __init__(self,
in_filters,
out_filters,
use_conv_shortcut = False
) -> None:
super().__init__()
self.in_filters = in_filters
self.out_filters = out_filters
self.use_conv_shortcut = use_conv_shortcut
self.norm1 = nn.GroupNorm(32, in_filters, eps=1e-6)
self.norm2 = nn.GroupNorm(32, out_filters, eps=1e-6)
self.conv1 = nn.Conv2d(in_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False)
self.conv2 = nn.Conv2d(out_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False)
if in_filters != out_filters:
if self.use_conv_shortcut:
self.conv_shortcut = nn.Conv2d(in_filters, out_filters, kernel_size=(3, 3), padding=1, bias=False)
else:
self.nin_shortcut = nn.Conv2d(in_filters, out_filters, kernel_size=(1, 1), padding=0, bias=False)
def forward(self, x, **kwargs):
residual = x
x = self.norm1(x)
x = swish(x)
x = self.conv1(x)
x = self.norm2(x)
x = swish(x)
x = self.conv2(x)
if self.in_filters != self.out_filters:
if self.use_conv_shortcut:
residual = self.conv_shortcut(residual)
else:
residual = self.nin_shortcut(residual)
return x + residual
class Encoder(nn.Module):
def __init__(self, *, ch, out_ch, in_channels, num_res_blocks, z_channels, ch_mult=(1, 2, 2, 4)):
super().__init__()
self.in_channels = in_channels
self.z_channels = z_channels
self.num_res_blocks = num_res_blocks
self.num_blocks = len(ch_mult)
self.conv_in = nn.Conv2d(in_channels,
ch,
kernel_size=(3, 3),
padding=1,
bias=False
)
## construct the model
self.down = nn.ModuleList()
in_ch_mult = (1,)+tuple(ch_mult)
for i_level in range(self.num_blocks):
block = nn.ModuleList()
block_in = ch*in_ch_mult[i_level] #[1, 1, 2, 2, 4]
block_out = ch*ch_mult[i_level] #[1, 2, 2, 4]
for _ in range(self.num_res_blocks):
block.append(ResBlock(block_in, block_out))
block_in = block_out
down = nn.Module()
down.block = block
if i_level < self.num_blocks - 1:
down.downsample = nn.Conv2d(block_out, block_out, kernel_size=(3, 3), stride=(2, 2), padding=1)
self.down.append(down)
### mid
self.mid_block = nn.ModuleList()
for res_idx in range(self.num_res_blocks):
self.mid_block.append(ResBlock(block_in, block_in))
### end
self.norm_out = nn.GroupNorm(32, block_out, eps=1e-6)
self.conv_out = nn.Conv2d(block_out, z_channels, kernel_size=(1, 1))
def forward(self, x):
## down
x = self.conv_in(x)
for i_level in range(self.num_blocks):
for i_block in range(self.num_res_blocks):
x = self.down[i_level].block[i_block](x)
if i_level < self.num_blocks - 1:
x = self.down[i_level].downsample(x)
## mid
for res in range(self.num_res_blocks):
x = self.mid_block[res](x)
x = self.norm_out(x)
x = swish(x)
x = self.conv_out(x)
return x
class Decoder(nn.Module):
def __init__(self, *, ch, out_ch, in_channels, num_res_blocks, z_channels, ch_mult=(1, 2, 2, 4)) -> None:
super().__init__()
self.ch = ch
self.num_blocks = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.in_channels = in_channels
block_in = ch*ch_mult[self.num_blocks-1]
self.conv_in = nn.Conv2d(
z_channels, block_in, kernel_size=(3, 3), padding=1, bias=True
)
self.mid_block = nn.ModuleList()
for res_idx in range(self.num_res_blocks):
self.mid_block.append(ResBlock(block_in, block_in))
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_blocks)):
block = nn.ModuleList()
block_out = ch*ch_mult[i_level]
for i_block in range(self.num_res_blocks):
block.append(ResBlock(block_in, block_out))
block_in = block_out
up = nn.Module()
up.block = block
if i_level > 0:
up.upsample = Upsampler(block_in)
self.up.insert(0, up)
self.norm_out = nn.GroupNorm(32, block_in, eps=1e-6)
self.conv_out = nn.Conv2d(block_in, out_ch, kernel_size=(3, 3), padding=1)
def forward(self, z):
z = self.conv_in(z)
## mid
for res in range(self.num_res_blocks):
z = self.mid_block[res](z)
## upsample
for i_level in reversed(range(self.num_blocks)):
for i_block in range(self.num_res_blocks):
z = self.up[i_level].block[i_block](z)
if i_level > 0:
z = self.up[i_level].upsample(z)
z = self.norm_out(z)
z = swish(z)
z = self.conv_out(z)
return z
def depth_to_space(x: torch.Tensor, block_size: int) -> torch.Tensor:
""" Depth-to-Space DCR mode (depth-column-row) core implementation.
Args:
x (torch.Tensor): input tensor. The channels-first (*CHW) layout is supported.
block_size (int): block side size
"""
# check inputs
if x.dim() < 3:
raise ValueError(
f"Expecting a channels-first (*CHW) tensor of at least 3 dimensions"
)
c, h, w = x.shape[-3:]
s = block_size**2
if c % s != 0:
raise ValueError(
f"Expecting a channels-first (*CHW) tensor with C divisible by {s}, but got C={c} channels"
)
outer_dims = x.shape[:-3]
# splitting two additional dimensions from the channel dimension
x = x.view(-1, block_size, block_size, c // s, h, w)
# putting the two new dimensions along H and W
x = x.permute(0, 3, 4, 1, 5, 2)
# merging the two new dimensions with H and W
x = x.contiguous().view(*outer_dims, c // s, h * block_size,
w * block_size)
return x
class Upsampler(nn.Module):
def __init__(
self,
dim,
dim_out = None
):
super().__init__()
dim_out = dim * 4
self.conv1 = nn.Conv2d(dim, dim_out, (3, 3), padding=1)
self.depth2space = depth_to_space
def forward(self, x):
"""
input_image: [B C H W]
"""
out = self.conv1(x)
out = self.depth2space(out, block_size=2)
return out
class AdaptiveGroupNorm(nn.Module):
def __init__(self, z_channel, in_filters, num_groups=32, eps=1e-6):
super().__init__()
self.gn = nn.GroupNorm(num_groups=32, num_channels=in_filters, eps=eps, affine=False)
# self.lin = nn.Linear(z_channels, in_filters * 2)
self.gamma = nn.Linear(z_channel, in_filters)
self.beta = nn.Linear(z_channel, in_filters)
self.eps = eps
def forward(self, x, quantizer):
B, C, _, _ = x.shape
# quantizer = F.adaptive_avg_pool2d(quantizer, (1, 1))
### calcuate var for scale
scale = rearrange(quantizer, "b c h w -> b c (h w)")
scale = scale.var(dim=-1) + self.eps #not unbias
scale = scale.sqrt()
scale = self.gamma(scale).view(B, C, 1, 1)
### calculate mean for bias
bias = rearrange(quantizer, "b c h w -> b c (h w)")
bias = bias.mean(dim=-1)
bias = self.beta(bias).view(B, C, 1, 1)
x = self.gn(x)
x = scale * x + bias
return x
# constants
LossBreakdown = namedtuple('LossBreakdown', ['per_sample_entropy', 'codebook_entropy', 'commitment', 'avg_probs'])
# helper functions
def exists(v):
return v is not None
def default(*args):
for arg in args:
if exists(arg):
return arg() if callable(arg) else arg
return None
def pack_one(t, pattern):
return pack([t], pattern)
def unpack_one(t, ps, pattern):
return unpack(t, ps, pattern)[0]
# entropy
def entropy(prob):
return (-prob * torch.log(prob + 1e-5)).sum(dim=-1)
# class
def mult_along_first_dims(x, y):
"""
returns x * y elementwise along the leading dimensions of y
"""
ndim_to_expand = x.ndim - y.ndim
for _ in range(ndim_to_expand):
y = y.unsqueeze(-1)
return x * y
def masked_mean(x, m):
"""
takes the mean of the elements of x that are not masked
the mean is taken along the shared leading dims of m
equivalent to: x[m].mean(tuple(range(m.ndim)))
The benefit of using masked_mean rather than using
tensor indexing is that masked_mean is much faster
for torch-compile on batches.
The drawback is larger floating point errors
"""
x = mult_along_first_dims(x, m)
x = x / m.sum()
return x.sum(tuple(range(m.ndim)))
def entropy_loss(
logits,
mask=None,
temperature=0.01,
sample_minimization_weight=1.0,
batch_maximization_weight=1.0,
eps=1e-5,
):
"""
Entropy loss of unnormalized logits
logits: Affinities are over the last dimension
https://github.com/google-research/magvit/blob/05e8cfd6559c47955793d70602d62a2f9b0bdef5/videogvt/train_lib/losses.py#L279
LANGUAGE MODEL BEATS DIFFUSION — TOKENIZER IS KEY TO VISUAL GENERATION (2024)
"""
probs = F.softmax(logits / temperature, -1)
log_probs = F.log_softmax(logits / temperature + eps, -1)
if mask is not None:
avg_probs = masked_mean(probs, mask)
else:
avg_probs = reduce(probs, "... D -> D", "mean")
avg_entropy = -torch.sum(avg_probs * torch.log(avg_probs + eps))
sample_entropy = -torch.sum(probs * log_probs, -1)
if mask is not None:
sample_entropy = masked_mean(sample_entropy, mask).mean()
else:
sample_entropy = torch.mean(sample_entropy)
loss = (sample_minimization_weight * sample_entropy) - (
batch_maximization_weight * avg_entropy
)
return sample_entropy, avg_entropy, loss
class LFQ(Module):
def __init__(
self,
*,
dim = None,
codebook_size = None,
num_codebooks = 1,
sample_minimization_weight=1.0,
batch_maximization_weight=1.0,
token_factorization = False,
):
super().__init__()
# some assert validations
assert exists(dim) or exists(codebook_size), 'either dim or codebook_size must be specified for LFQ'
assert not exists(codebook_size) or log2(codebook_size).is_integer(), f'your codebook size must be a power of 2 for lookup free quantization (suggested {2 ** ceil(log2(codebook_size))})'
self.codebook_size = default(codebook_size, lambda: 2 ** dim)
self.codebook_dim = int(log2(codebook_size))
codebook_dims = self.codebook_dim * num_codebooks
dim = default(dim, codebook_dims)
has_projections = dim != codebook_dims
self.has_projections = has_projections
self.dim = dim
self.codebook_dim = self.codebook_dim
self.num_codebooks = num_codebooks
# for entropy loss
self.sample_minimization_weight = sample_minimization_weight
self.batch_maximization_weight = batch_maximization_weight
# for no auxiliary loss, during inference
self.token_factorization = token_factorization ## only utilized in second stage
if not self.token_factorization: #for first stage model
self.register_buffer('mask', 2 ** torch.arange(self.codebook_dim - 1, -1, -1), persistent=False)
else:
k = self.codebook_dim // 2
self.register_buffer("mask", 2 ** torch.arange(k - 1, -1, -1), persistent=False)
self.register_buffer('zero', torch.tensor(0.), persistent = False)
# codes
all_codes = torch.arange(codebook_size)
bits = self.indices_to_bits(all_codes)
codebook = bits * 2.0 - 1.0
self.register_buffer('codebook', codebook, persistent = False)
@property
def dtype(self):
return self.codebook.dtype
def indices_to_bits(self, x):
"""
x: long tensor of indices for constructing codebook, but actually not utilized in all the experiments.
returns big endian bits
"""
mask = 2 ** torch.arange(self.codebook_dim, device=x.device, dtype=torch.long)
# x is now big endian bits, the last dimension being the bits
x = (x.unsqueeze(-1) & mask) != 0
return x
def get_codebook_entry(self, x, bhwc):
if self.token_factorization:
k = self.codebook_dim // 2
mask = 2 ** torch.arange(k - 1, -1, -1, device=x.device, dtype=torch.long)
else:
mask = 2 ** torch.arange(self.codebook_dim-1, -1, -1, device=x.device, dtype=torch.long)
x = (x.unsqueeze(-1) & mask) != 0
x = x * 2.0 - 1.0 #back to the float
## scale back to the desired shape
b, h, w, c = bhwc
x = rearrange(x, "b (h w) c -> b h w c", h=h, w=w, c=c)
x = rearrange(x, "b h w c -> b c h w")
return x
def bits_to_indices(self, bits):
"""
bits: bool tensor of big endian bits, where the last dimension is the bit dimension
returns indices, which are long integers from 0 to self.codebook_size
"""
assert bits.shape[-1] == self.codebook_dim
indices = 2 ** torch.arange(
0,
self.codebook_dim,
1,
dtype=torch.long,
device=bits.device,
)
return (bits * indices).sum(-1)
def decode(self, x):
"""
x: ... NH
where NH is number of codebook heads
A longtensor of codebook indices, containing values from
0 to self.codebook_size
"""
x = self.indices_to_bits(x)
# to some sort of float
x = x.to(self.dtype)
# -1 or 1
x = x * 2 - 1
x = rearrange(x, "... NC Z-> ... (NC Z)")
return x
def forward(
self,
x,
return_loss_breakdown = False,
mask = None,
return_loss = True,
):
"""
einstein notation
b - batch
n - sequence (or flattened spatial dimensions)
d - feature dimension, which is also log2(codebook size)
c - number of codebook dim
"""
x = rearrange(x, 'b d ... -> b ... d')
x, ps = pack_one(x, 'b * d')
# split out number of codebooks
x = rearrange(x, 'b n (c d) -> b n c d', c = self.num_codebooks)
codebook_value = torch.Tensor([1.0]).to(device=x.device, dtype=x.dtype)
quantized = torch.where(x > 0, codebook_value, -codebook_value) # higher than 0 filled
# calculate indices
if self.token_factorization:
k = self.codebook_dim // 2
indices_pre = reduce((quantized[..., :k] > 0).int() * self.mask.int(), "b n c d -> b n c", "sum")
indices_post = reduce((quantized[..., k:] > 0).int() * self.mask.int(), "b n c d -> b n c", "sum")
# indices_post = 2**k + indices_post #shifter to the 1024
else:
indices = reduce((quantized > 0).int() * self.mask.int(), 'b n c d -> b n c', 'sum')
# entropy aux loss
if self.training and return_loss:
logits = 2 * einsum('... i d, j d -> ... i j', x, self.codebook)
# the same as euclidean distance up to a constant
per_sample_entropy, codebook_entropy, entropy_aux_loss = entropy_loss(
logits = logits,
sample_minimization_weight = self.sample_minimization_weight,
batch_maximization_weight = self.batch_maximization_weight
)
avg_probs = self.zero
else:
## calculate the codebook_entropy needed for one batch evaluation
#------------------------------------------------------------------
# logits = 2 * einsum('... i d, j d -> ... i j', x, self.codebook)
# probs = F.softmax(logits / 0.01, -1)
# avg_probs = reduce(probs, "b n c d -> b d", "mean")
# avg_probs = torch.sum(avg_probs, 0) #batch dimension
#-------------------------------------------------------------------
# if not training, just return dummy 0
per_sample_entropy = codebook_entropy = self.zero
entropy_aux_loss = self.zero
avg_probs = self.zero
# commit loss
if self.training:
commit_loss = F.mse_loss(x, quantized.detach(), reduction = 'none')
if exists(mask):
commit_loss = commit_loss[mask]
commit_loss = commit_loss.mean()
else:
commit_loss = self.zero
# use straight-through gradients (optionally with custom activation fn) if training
quantized = x + (quantized - x).detach() #transfer to quantized
# merge back codebook dim
quantized = rearrange(quantized, 'b n c d -> b n (c d)')
# reconstitute image or video dimensions
quantized = unpack_one(quantized, ps, 'b * d')
quantized = rearrange(quantized, 'b ... d -> b d ...')
if self.token_factorization:
indices_pre = unpack_one(indices_pre, ps, "b * c")
indices_post = unpack_one(indices_post, ps, "b * c")
indices_pre = indices_pre.flatten()
indices_post = indices_post.flatten()
indices = (indices_pre, indices_post)
else:
indices = unpack_one(indices, ps, 'b * c')
indices = indices.flatten()
ret = (quantized, entropy_aux_loss, indices)
if not return_loss_breakdown:
return ret
return ret, LossBreakdown(per_sample_entropy, codebook_entropy, commit_loss, avg_probs)
class LFQTokenizer(PreTrainedModel):
config_class = LFQTokenizerConfig
def __init__(self, config: LFQTokenizerConfig):
super().__init__(config)
self.encoder = Encoder(**config.encoder_decoder_config)
self.decoder = Decoder(**config.encoder_decoder_config)
self.quantize = LFQ(**config.quantizer_config)
def encode(self, x):
h = self.encoder(x)
(quant, emb_loss, info), loss_breakdown = self.quantize(h, return_loss_breakdown=True)
return quant, emb_loss, info, loss_breakdown
def decode(self, quant):
return self.decoder(quant)
def forward(self, input):
quant, diff, _, loss_breakdown = self.encode(input)
dec = self.decoder(quant)
return dec, diff, loss_breakdown
def tokenize(self, input):
_, _, tokens, _ = self.encode(input)
return tokens
def get_last_layer(self):
return self.decoder.conv_out.weight
def decode_tokens(self, tokens, shape: tuple):
if self.quantize.token_factorization:
tokens_pre, tokens_post = tokens[0], tokens[1]
quant_pre = self.quantize.get_codebook_entry(tokens_pre, shape)
quant_post = self.quantize.get_codebook_entry(tokens_post, shape)
quant = torch.concat([quant_pre, quant_post], dim=1)
return self.decode(quant)
else:
if tokens.ndim == 1:
batch_size = shape[0]
tokens = tokens.view(batch_size, -1)
quant = self.quantize.get_codebook_entry(tokens, shape)
return self.decode(quant)
|