File size: 7,176 Bytes
2441869 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import argparse
import json
import random
from pathlib import Path
import imageio
import numpy as np
import torch
from PIL import Image
from transformers import AutoModel
from tqdm import tqdm
# Constants
IMAGE_SIZE = (288, 512)
N_FRAMES_PER_ROUND = 25
MAX_NUM_FRAMES = 50
N_TOKENS_PER_FRAME = 576
TRAJ_TEMPLATE_PATH = Path("./assets/template_trajectory.json")
PATH_START_ID = 9
PATH_POINT_INTERVAL = 10
N_ACTION_TOKENS = 6
# change here if you want to use your own images
CONDITIONING_FRAMES_DIR = Path("./assets/conditioning_frames")
CONDITIONING_FRAMES_PATH_LIST = [
CONDITIONING_FRAMES_DIR / "001.png",
CONDITIONING_FRAMES_DIR / "002.png",
CONDITIONING_FRAMES_DIR / "003.png"
]
def set_random_seed(seed: int = 0):
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def preprocess_image(image: Image.Image, size: tuple[int, int] = (288, 512)) -> torch.Tensor:
H, W = size
image = image.convert("RGB")
image = image.resize((W, H))
image_array = np.array(image)
image_array = (image_array / 127.5 - 1.0).astype(np.float32)
return torch.from_numpy(image_array).permute(2, 0, 1).unsqueeze(0).float()
def to_np_images(images: torch.Tensor) -> np.ndarray:
images = images.detach().cpu()
images = torch.clamp(images, -1., 1.)
images = (images + 1.) / 2.
images = images.permute(0, 2, 3, 1).numpy()
return (255 * images).astype(np.uint8)
def load_images(file_path_list: list[Path], size: tuple[int, int] = (288, 512)) -> torch.Tensor:
images = []
for file_path in file_path_list:
image = Image.open(file_path)
image = preprocess_image(image, size)
images.append(image)
return torch.cat(images, dim=0)
def save_images_to_mp4(images: np.ndarray, output_path: Path, fps: int = 10):
writer = imageio.get_writer(output_path, fps=fps)
for img in images:
writer.append_data(img)
writer.close()
def determine_num_rounds(num_frames: int, num_overlapping_frames: int, n_initial_frames: int) -> int:
n_rounds = (num_frames - n_initial_frames) // (N_FRAMES_PER_ROUND - num_overlapping_frames)
if (num_frames - n_initial_frames) % (N_FRAMES_PER_ROUND - num_overlapping_frames) > 0:
n_rounds += 1
return n_rounds
def prepare_action(
traj_template: dict,
cmd: str,
path_start_id: int,
path_point_interval: int,
n_action_tokens: int = 5,
start_index: int = 0,
n_frames: int = 25
) -> torch.Tensor:
trajs = traj_template[cmd]["instruction_trajs"]
actions = []
timesteps = np.arange(0.0, 3.0, 0.05)
for i in range(start_index, start_index + n_frames):
traj = trajs[i][path_start_id::path_point_interval][:n_action_tokens]
action = np.array(traj)
timestep = timesteps[path_start_id::path_point_interval][:n_action_tokens]
action = np.concatenate([
action[:, [1, 0]],
timestep.reshape(-1, 1)
], axis=1)
actions.append(torch.tensor(action))
return torch.cat(actions, dim=0)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--seed", type=int, default=0)
parser.add_argument("--output_dir", type=Path)
parser.add_argument("--cmd", type=str, default="curving_to_left/curving_to_left_moderate")
parser.add_argument("--num_frames", type=int, default=25)
parser.add_argument("--num_overlapping_frames", type=int, default=3)
args = parser.parse_args()
assert args.num_frames <= MAX_NUM_FRAMES, f"`num_frames` should be less than or equal to {MAX_NUM_FRAMES}"
assert args.num_overlapping_frames < N_FRAMES_PER_ROUND, f"`num_overlapping_frames` should be less than {N_FRAMES_PER_ROUND}"
set_random_seed(args.seed)
if args.output_dir is None:
output_dir = Path(f"./outputs/{args.cmd}")
else:
output_dir = args.output_dir
output_dir.mkdir(parents=True, exist_ok=True)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
tokenizer = AutoModel.from_pretrained("turing-motors/Terra", subfolder="lfq_tokenizer_B_256", trust_remote_code=True).to(device).eval()
model = AutoModel.from_pretrained("turing-motors/Terra", subfolder="world_model", trust_remote_code=True).to(device).eval()
conditioning_frames = load_images(CONDITIONING_FRAMES_PATH_LIST, IMAGE_SIZE).to(device)
with torch.inference_mode(), torch.autocast(device_type="cuda"):
input_ids = tokenizer.tokenize(conditioning_frames).detach().unsqueeze(0)
num_rounds = determine_num_rounds(args.num_frames, args.num_overlapping_frames, len(CONDITIONING_FRAMES_PATH_LIST))
print(f"Number of generation rounds: {num_rounds}")
with open(TRAJ_TEMPLATE_PATH) as f:
traj_template = json.load(f)
all_outputs = []
for round in range(num_rounds):
start_index = round * (N_FRAMES_PER_ROUND - args.num_overlapping_frames)
num_frames_for_round = min(N_FRAMES_PER_ROUND, args.num_frames - start_index)
actions = prepare_action(
traj_template, args.cmd, PATH_START_ID, PATH_POINT_INTERVAL, N_ACTION_TOKENS, start_index, num_frames_for_round
).unsqueeze(0).to(device).float()
if round == 0:
num_generated_tokens = N_TOKENS_PER_FRAME * (num_frames_for_round - len(CONDITIONING_FRAMES_PATH_LIST))
else:
num_generated_tokens = N_TOKENS_PER_FRAME * (num_frames_for_round - args.num_overlapping_frames)
progress_bar = tqdm(total=num_generated_tokens, desc=f"Round {round + 1}")
with torch.inference_mode(), torch.autocast(device_type="cuda"):
output_tokens = model.generate(
input_ids=input_ids,
actions=actions,
do_sample=True,
max_length=N_TOKENS_PER_FRAME * num_frames_for_round,
temperature=1.0,
top_p=1.0,
use_cache=True,
pad_token_id=None,
eos_token_id=None,
progress_bar=progress_bar
)
if round == 0:
all_outputs.append(output_tokens[0])
else:
all_outputs.append(output_tokens[0, args.num_overlapping_frames * N_TOKENS_PER_FRAME:])
input_ids = output_tokens[:, -args.num_overlapping_frames * N_TOKENS_PER_FRAME:]
progress_bar.close()
output_ids = torch.cat(all_outputs)
# Calculate the shape of the latent tensor
downsample_ratio = 1
for coef in tokenizer.config.encoder_decoder_config["ch_mult"]:
downsample_ratio *= coef
h = IMAGE_SIZE[0] // downsample_ratio
w = IMAGE_SIZE[1] // downsample_ratio
c = tokenizer.config.encoder_decoder_config["z_channels"]
latent_shape = (len(output_ids) // 576, h, w, c)
# Decode the latent tensor to images
with torch.inference_mode(), torch.autocast(device_type="cuda"):
reconstructed = tokenizer.decode_tokens(output_ids, latent_shape)
reconstructed_images = to_np_images(reconstructed)
save_images_to_mp4(reconstructed_images, output_dir / "generated.mp4", fps=10)
|