twine-network commited on
Commit
c6f67a2
·
verified ·
1 Parent(s): 9ad825a

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +2655 -0
README.md ADDED
@@ -0,0 +1,2655 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: sentence-transformers
5
+ license: mit
6
+ pipeline_tag: sentence-similarity
7
+ tags:
8
+ - feature-extraction
9
+ - mteb
10
+ - sentence-similarity
11
+ - sentence-transformers
12
+ - transformers
13
+ - llama-cpp
14
+ - gguf-my-repo
15
+ base_model: avsolatorio/NoInstruct-small-Embedding-v0
16
+ model-index:
17
+ - name: NoInstruct-small-Embedding-v0
18
+ results:
19
+ - task:
20
+ type: Classification
21
+ dataset:
22
+ name: MTEB AmazonCounterfactualClassification (en)
23
+ type: mteb/amazon_counterfactual
24
+ config: en
25
+ split: test
26
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
27
+ metrics:
28
+ - type: accuracy
29
+ value: 75.76119402985074
30
+ - type: ap
31
+ value: 39.03628777559392
32
+ - type: f1
33
+ value: 69.85860402259618
34
+ - task:
35
+ type: Classification
36
+ dataset:
37
+ name: MTEB AmazonPolarityClassification
38
+ type: mteb/amazon_polarity
39
+ config: default
40
+ split: test
41
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
42
+ metrics:
43
+ - type: accuracy
44
+ value: 93.29920000000001
45
+ - type: ap
46
+ value: 90.03479490717608
47
+ - type: f1
48
+ value: 93.28554395248467
49
+ - task:
50
+ type: Classification
51
+ dataset:
52
+ name: MTEB AmazonReviewsClassification (en)
53
+ type: mteb/amazon_reviews_multi
54
+ config: en
55
+ split: test
56
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
57
+ metrics:
58
+ - type: accuracy
59
+ value: 49.98799999999999
60
+ - type: f1
61
+ value: 49.46151232451642
62
+ - task:
63
+ type: Retrieval
64
+ dataset:
65
+ name: MTEB ArguAna
66
+ type: mteb/arguana
67
+ config: default
68
+ split: test
69
+ revision: c22ab2a51041ffd869aaddef7af8d8215647e41a
70
+ metrics:
71
+ - type: map_at_1
72
+ value: 31.935000000000002
73
+ - type: map_at_10
74
+ value: 48.791000000000004
75
+ - type: map_at_100
76
+ value: 49.619
77
+ - type: map_at_1000
78
+ value: 49.623
79
+ - type: map_at_3
80
+ value: 44.334
81
+ - type: map_at_5
82
+ value: 46.908
83
+ - type: mrr_at_1
84
+ value: 32.93
85
+ - type: mrr_at_10
86
+ value: 49.158
87
+ - type: mrr_at_100
88
+ value: 50.00599999999999
89
+ - type: mrr_at_1000
90
+ value: 50.01
91
+ - type: mrr_at_3
92
+ value: 44.618
93
+ - type: mrr_at_5
94
+ value: 47.325
95
+ - type: ndcg_at_1
96
+ value: 31.935000000000002
97
+ - type: ndcg_at_10
98
+ value: 57.593
99
+ - type: ndcg_at_100
100
+ value: 60.841
101
+ - type: ndcg_at_1000
102
+ value: 60.924
103
+ - type: ndcg_at_3
104
+ value: 48.416
105
+ - type: ndcg_at_5
106
+ value: 53.05
107
+ - type: precision_at_1
108
+ value: 31.935000000000002
109
+ - type: precision_at_10
110
+ value: 8.549
111
+ - type: precision_at_100
112
+ value: 0.9900000000000001
113
+ - type: precision_at_1000
114
+ value: 0.1
115
+ - type: precision_at_3
116
+ value: 20.081
117
+ - type: precision_at_5
118
+ value: 14.296000000000001
119
+ - type: recall_at_1
120
+ value: 31.935000000000002
121
+ - type: recall_at_10
122
+ value: 85.491
123
+ - type: recall_at_100
124
+ value: 99.004
125
+ - type: recall_at_1000
126
+ value: 99.644
127
+ - type: recall_at_3
128
+ value: 60.242
129
+ - type: recall_at_5
130
+ value: 71.479
131
+ - task:
132
+ type: Clustering
133
+ dataset:
134
+ name: MTEB ArxivClusteringP2P
135
+ type: mteb/arxiv-clustering-p2p
136
+ config: default
137
+ split: test
138
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
139
+ metrics:
140
+ - type: v_measure
141
+ value: 47.78438534940855
142
+ - task:
143
+ type: Clustering
144
+ dataset:
145
+ name: MTEB ArxivClusteringS2S
146
+ type: mteb/arxiv-clustering-s2s
147
+ config: default
148
+ split: test
149
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
150
+ metrics:
151
+ - type: v_measure
152
+ value: 40.12916178519471
153
+ - task:
154
+ type: Reranking
155
+ dataset:
156
+ name: MTEB AskUbuntuDupQuestions
157
+ type: mteb/askubuntudupquestions-reranking
158
+ config: default
159
+ split: test
160
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
161
+ metrics:
162
+ - type: map
163
+ value: 62.125361608299855
164
+ - type: mrr
165
+ value: 74.92525172580574
166
+ - task:
167
+ type: STS
168
+ dataset:
169
+ name: MTEB BIOSSES
170
+ type: mteb/biosses-sts
171
+ config: default
172
+ split: test
173
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
174
+ metrics:
175
+ - type: cos_sim_pearson
176
+ value: 88.64322910336641
177
+ - type: cos_sim_spearman
178
+ value: 87.20138453306345
179
+ - type: euclidean_pearson
180
+ value: 87.08547818178234
181
+ - type: euclidean_spearman
182
+ value: 87.17066094143931
183
+ - type: manhattan_pearson
184
+ value: 87.30053110771618
185
+ - type: manhattan_spearman
186
+ value: 86.86824441211934
187
+ - task:
188
+ type: Classification
189
+ dataset:
190
+ name: MTEB Banking77Classification
191
+ type: mteb/banking77
192
+ config: default
193
+ split: test
194
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
195
+ metrics:
196
+ - type: accuracy
197
+ value: 86.3961038961039
198
+ - type: f1
199
+ value: 86.3669961645295
200
+ - task:
201
+ type: Clustering
202
+ dataset:
203
+ name: MTEB BiorxivClusteringP2P
204
+ type: mteb/biorxiv-clustering-p2p
205
+ config: default
206
+ split: test
207
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
208
+ metrics:
209
+ - type: v_measure
210
+ value: 39.40291404289857
211
+ - task:
212
+ type: Clustering
213
+ dataset:
214
+ name: MTEB BiorxivClusteringS2S
215
+ type: mteb/biorxiv-clustering-s2s
216
+ config: default
217
+ split: test
218
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
219
+ metrics:
220
+ - type: v_measure
221
+ value: 35.102356817746816
222
+ - task:
223
+ type: Retrieval
224
+ dataset:
225
+ name: MTEB CQADupstackAndroidRetrieval
226
+ type: mteb/cqadupstack-android
227
+ config: default
228
+ split: test
229
+ revision: f46a197baaae43b4f621051089b82a364682dfeb
230
+ metrics:
231
+ - type: map_at_1
232
+ value: 31.013
233
+ - type: map_at_10
234
+ value: 42.681999999999995
235
+ - type: map_at_100
236
+ value: 44.24
237
+ - type: map_at_1000
238
+ value: 44.372
239
+ - type: map_at_3
240
+ value: 39.181
241
+ - type: map_at_5
242
+ value: 41.071999999999996
243
+ - type: mrr_at_1
244
+ value: 38.196999999999996
245
+ - type: mrr_at_10
246
+ value: 48.604
247
+ - type: mrr_at_100
248
+ value: 49.315
249
+ - type: mrr_at_1000
250
+ value: 49.363
251
+ - type: mrr_at_3
252
+ value: 45.756
253
+ - type: mrr_at_5
254
+ value: 47.43
255
+ - type: ndcg_at_1
256
+ value: 38.196999999999996
257
+ - type: ndcg_at_10
258
+ value: 49.344
259
+ - type: ndcg_at_100
260
+ value: 54.662
261
+ - type: ndcg_at_1000
262
+ value: 56.665
263
+ - type: ndcg_at_3
264
+ value: 44.146
265
+ - type: ndcg_at_5
266
+ value: 46.514
267
+ - type: precision_at_1
268
+ value: 38.196999999999996
269
+ - type: precision_at_10
270
+ value: 9.571
271
+ - type: precision_at_100
272
+ value: 1.542
273
+ - type: precision_at_1000
274
+ value: 0.202
275
+ - type: precision_at_3
276
+ value: 21.364
277
+ - type: precision_at_5
278
+ value: 15.336
279
+ - type: recall_at_1
280
+ value: 31.013
281
+ - type: recall_at_10
282
+ value: 61.934999999999995
283
+ - type: recall_at_100
284
+ value: 83.923
285
+ - type: recall_at_1000
286
+ value: 96.601
287
+ - type: recall_at_3
288
+ value: 46.86
289
+ - type: recall_at_5
290
+ value: 53.620000000000005
291
+ - task:
292
+ type: Retrieval
293
+ dataset:
294
+ name: MTEB CQADupstackEnglishRetrieval
295
+ type: mteb/cqadupstack-english
296
+ config: default
297
+ split: test
298
+ revision: ad9991cb51e31e31e430383c75ffb2885547b5f0
299
+ metrics:
300
+ - type: map_at_1
301
+ value: 29.84
302
+ - type: map_at_10
303
+ value: 39.335
304
+ - type: map_at_100
305
+ value: 40.647
306
+ - type: map_at_1000
307
+ value: 40.778
308
+ - type: map_at_3
309
+ value: 36.556
310
+ - type: map_at_5
311
+ value: 38.048
312
+ - type: mrr_at_1
313
+ value: 36.815
314
+ - type: mrr_at_10
315
+ value: 45.175
316
+ - type: mrr_at_100
317
+ value: 45.907
318
+ - type: mrr_at_1000
319
+ value: 45.946999999999996
320
+ - type: mrr_at_3
321
+ value: 42.909000000000006
322
+ - type: mrr_at_5
323
+ value: 44.227
324
+ - type: ndcg_at_1
325
+ value: 36.815
326
+ - type: ndcg_at_10
327
+ value: 44.783
328
+ - type: ndcg_at_100
329
+ value: 49.551
330
+ - type: ndcg_at_1000
331
+ value: 51.612
332
+ - type: ndcg_at_3
333
+ value: 40.697
334
+ - type: ndcg_at_5
335
+ value: 42.558
336
+ - type: precision_at_1
337
+ value: 36.815
338
+ - type: precision_at_10
339
+ value: 8.363
340
+ - type: precision_at_100
341
+ value: 1.385
342
+ - type: precision_at_1000
343
+ value: 0.186
344
+ - type: precision_at_3
345
+ value: 19.342000000000002
346
+ - type: precision_at_5
347
+ value: 13.706999999999999
348
+ - type: recall_at_1
349
+ value: 29.84
350
+ - type: recall_at_10
351
+ value: 54.164
352
+ - type: recall_at_100
353
+ value: 74.36
354
+ - type: recall_at_1000
355
+ value: 87.484
356
+ - type: recall_at_3
357
+ value: 42.306
358
+ - type: recall_at_5
359
+ value: 47.371
360
+ - task:
361
+ type: Retrieval
362
+ dataset:
363
+ name: MTEB CQADupstackGamingRetrieval
364
+ type: mteb/cqadupstack-gaming
365
+ config: default
366
+ split: test
367
+ revision: 4885aa143210c98657558c04aaf3dc47cfb54340
368
+ metrics:
369
+ - type: map_at_1
370
+ value: 39.231
371
+ - type: map_at_10
372
+ value: 51.44800000000001
373
+ - type: map_at_100
374
+ value: 52.574
375
+ - type: map_at_1000
376
+ value: 52.629999999999995
377
+ - type: map_at_3
378
+ value: 48.077
379
+ - type: map_at_5
380
+ value: 50.019000000000005
381
+ - type: mrr_at_1
382
+ value: 44.89
383
+ - type: mrr_at_10
384
+ value: 54.803000000000004
385
+ - type: mrr_at_100
386
+ value: 55.556000000000004
387
+ - type: mrr_at_1000
388
+ value: 55.584
389
+ - type: mrr_at_3
390
+ value: 52.32
391
+ - type: mrr_at_5
392
+ value: 53.846000000000004
393
+ - type: ndcg_at_1
394
+ value: 44.89
395
+ - type: ndcg_at_10
396
+ value: 57.228
397
+ - type: ndcg_at_100
398
+ value: 61.57
399
+ - type: ndcg_at_1000
400
+ value: 62.613
401
+ - type: ndcg_at_3
402
+ value: 51.727000000000004
403
+ - type: ndcg_at_5
404
+ value: 54.496
405
+ - type: precision_at_1
406
+ value: 44.89
407
+ - type: precision_at_10
408
+ value: 9.266
409
+ - type: precision_at_100
410
+ value: 1.2309999999999999
411
+ - type: precision_at_1000
412
+ value: 0.136
413
+ - type: precision_at_3
414
+ value: 23.051
415
+ - type: precision_at_5
416
+ value: 15.987000000000002
417
+ - type: recall_at_1
418
+ value: 39.231
419
+ - type: recall_at_10
420
+ value: 70.82000000000001
421
+ - type: recall_at_100
422
+ value: 89.446
423
+ - type: recall_at_1000
424
+ value: 96.665
425
+ - type: recall_at_3
426
+ value: 56.40500000000001
427
+ - type: recall_at_5
428
+ value: 62.993
429
+ - task:
430
+ type: Retrieval
431
+ dataset:
432
+ name: MTEB CQADupstackGisRetrieval
433
+ type: mteb/cqadupstack-gis
434
+ config: default
435
+ split: test
436
+ revision: 5003b3064772da1887988e05400cf3806fe491f2
437
+ metrics:
438
+ - type: map_at_1
439
+ value: 25.296000000000003
440
+ - type: map_at_10
441
+ value: 34.021
442
+ - type: map_at_100
443
+ value: 35.158
444
+ - type: map_at_1000
445
+ value: 35.233
446
+ - type: map_at_3
447
+ value: 31.424999999999997
448
+ - type: map_at_5
449
+ value: 33.046
450
+ - type: mrr_at_1
451
+ value: 27.232
452
+ - type: mrr_at_10
453
+ value: 36.103
454
+ - type: mrr_at_100
455
+ value: 37.076
456
+ - type: mrr_at_1000
457
+ value: 37.135
458
+ - type: mrr_at_3
459
+ value: 33.635
460
+ - type: mrr_at_5
461
+ value: 35.211
462
+ - type: ndcg_at_1
463
+ value: 27.232
464
+ - type: ndcg_at_10
465
+ value: 38.878
466
+ - type: ndcg_at_100
467
+ value: 44.284
468
+ - type: ndcg_at_1000
469
+ value: 46.268
470
+ - type: ndcg_at_3
471
+ value: 33.94
472
+ - type: ndcg_at_5
473
+ value: 36.687
474
+ - type: precision_at_1
475
+ value: 27.232
476
+ - type: precision_at_10
477
+ value: 5.921
478
+ - type: precision_at_100
479
+ value: 0.907
480
+ - type: precision_at_1000
481
+ value: 0.11199999999999999
482
+ - type: precision_at_3
483
+ value: 14.426
484
+ - type: precision_at_5
485
+ value: 10.215
486
+ - type: recall_at_1
487
+ value: 25.296000000000003
488
+ - type: recall_at_10
489
+ value: 51.708
490
+ - type: recall_at_100
491
+ value: 76.36699999999999
492
+ - type: recall_at_1000
493
+ value: 91.306
494
+ - type: recall_at_3
495
+ value: 38.651
496
+ - type: recall_at_5
497
+ value: 45.201
498
+ - task:
499
+ type: Retrieval
500
+ dataset:
501
+ name: MTEB CQADupstackMathematicaRetrieval
502
+ type: mteb/cqadupstack-mathematica
503
+ config: default
504
+ split: test
505
+ revision: 90fceea13679c63fe563ded68f3b6f06e50061de
506
+ metrics:
507
+ - type: map_at_1
508
+ value: 16.24
509
+ - type: map_at_10
510
+ value: 24.696
511
+ - type: map_at_100
512
+ value: 25.945
513
+ - type: map_at_1000
514
+ value: 26.069
515
+ - type: map_at_3
516
+ value: 22.542
517
+ - type: map_at_5
518
+ value: 23.526
519
+ - type: mrr_at_1
520
+ value: 20.149
521
+ - type: mrr_at_10
522
+ value: 29.584
523
+ - type: mrr_at_100
524
+ value: 30.548
525
+ - type: mrr_at_1000
526
+ value: 30.618000000000002
527
+ - type: mrr_at_3
528
+ value: 27.301
529
+ - type: mrr_at_5
530
+ value: 28.563
531
+ - type: ndcg_at_1
532
+ value: 20.149
533
+ - type: ndcg_at_10
534
+ value: 30.029
535
+ - type: ndcg_at_100
536
+ value: 35.812
537
+ - type: ndcg_at_1000
538
+ value: 38.755
539
+ - type: ndcg_at_3
540
+ value: 26.008
541
+ - type: ndcg_at_5
542
+ value: 27.517000000000003
543
+ - type: precision_at_1
544
+ value: 20.149
545
+ - type: precision_at_10
546
+ value: 5.647
547
+ - type: precision_at_100
548
+ value: 0.968
549
+ - type: precision_at_1000
550
+ value: 0.136
551
+ - type: precision_at_3
552
+ value: 12.934999999999999
553
+ - type: precision_at_5
554
+ value: 8.955
555
+ - type: recall_at_1
556
+ value: 16.24
557
+ - type: recall_at_10
558
+ value: 41.464
559
+ - type: recall_at_100
560
+ value: 66.781
561
+ - type: recall_at_1000
562
+ value: 87.85300000000001
563
+ - type: recall_at_3
564
+ value: 29.822
565
+ - type: recall_at_5
566
+ value: 34.096
567
+ - task:
568
+ type: Retrieval
569
+ dataset:
570
+ name: MTEB CQADupstackPhysicsRetrieval
571
+ type: mteb/cqadupstack-physics
572
+ config: default
573
+ split: test
574
+ revision: 79531abbd1fb92d06c6d6315a0cbbbf5bb247ea4
575
+ metrics:
576
+ - type: map_at_1
577
+ value: 29.044999999999998
578
+ - type: map_at_10
579
+ value: 39.568999999999996
580
+ - type: map_at_100
581
+ value: 40.831
582
+ - type: map_at_1000
583
+ value: 40.948
584
+ - type: map_at_3
585
+ value: 36.495
586
+ - type: map_at_5
587
+ value: 38.21
588
+ - type: mrr_at_1
589
+ value: 35.611
590
+ - type: mrr_at_10
591
+ value: 45.175
592
+ - type: mrr_at_100
593
+ value: 45.974
594
+ - type: mrr_at_1000
595
+ value: 46.025
596
+ - type: mrr_at_3
597
+ value: 42.765
598
+ - type: mrr_at_5
599
+ value: 44.151
600
+ - type: ndcg_at_1
601
+ value: 35.611
602
+ - type: ndcg_at_10
603
+ value: 45.556999999999995
604
+ - type: ndcg_at_100
605
+ value: 50.86000000000001
606
+ - type: ndcg_at_1000
607
+ value: 52.983000000000004
608
+ - type: ndcg_at_3
609
+ value: 40.881
610
+ - type: ndcg_at_5
611
+ value: 43.035000000000004
612
+ - type: precision_at_1
613
+ value: 35.611
614
+ - type: precision_at_10
615
+ value: 8.306
616
+ - type: precision_at_100
617
+ value: 1.276
618
+ - type: precision_at_1000
619
+ value: 0.165
620
+ - type: precision_at_3
621
+ value: 19.57
622
+ - type: precision_at_5
623
+ value: 13.725000000000001
624
+ - type: recall_at_1
625
+ value: 29.044999999999998
626
+ - type: recall_at_10
627
+ value: 57.513999999999996
628
+ - type: recall_at_100
629
+ value: 80.152
630
+ - type: recall_at_1000
631
+ value: 93.982
632
+ - type: recall_at_3
633
+ value: 44.121
634
+ - type: recall_at_5
635
+ value: 50.007000000000005
636
+ - task:
637
+ type: Retrieval
638
+ dataset:
639
+ name: MTEB CQADupstackProgrammersRetrieval
640
+ type: mteb/cqadupstack-programmers
641
+ config: default
642
+ split: test
643
+ revision: 6184bc1440d2dbc7612be22b50686b8826d22b32
644
+ metrics:
645
+ - type: map_at_1
646
+ value: 22.349
647
+ - type: map_at_10
648
+ value: 33.434000000000005
649
+ - type: map_at_100
650
+ value: 34.8
651
+ - type: map_at_1000
652
+ value: 34.919
653
+ - type: map_at_3
654
+ value: 30.348000000000003
655
+ - type: map_at_5
656
+ value: 31.917
657
+ - type: mrr_at_1
658
+ value: 28.195999999999998
659
+ - type: mrr_at_10
660
+ value: 38.557
661
+ - type: mrr_at_100
662
+ value: 39.550999999999995
663
+ - type: mrr_at_1000
664
+ value: 39.607
665
+ - type: mrr_at_3
666
+ value: 36.035000000000004
667
+ - type: mrr_at_5
668
+ value: 37.364999999999995
669
+ - type: ndcg_at_1
670
+ value: 28.195999999999998
671
+ - type: ndcg_at_10
672
+ value: 39.656000000000006
673
+ - type: ndcg_at_100
674
+ value: 45.507999999999996
675
+ - type: ndcg_at_1000
676
+ value: 47.848
677
+ - type: ndcg_at_3
678
+ value: 34.609
679
+ - type: ndcg_at_5
680
+ value: 36.65
681
+ - type: precision_at_1
682
+ value: 28.195999999999998
683
+ - type: precision_at_10
684
+ value: 7.534000000000001
685
+ - type: precision_at_100
686
+ value: 1.217
687
+ - type: precision_at_1000
688
+ value: 0.158
689
+ - type: precision_at_3
690
+ value: 17.085
691
+ - type: precision_at_5
692
+ value: 12.169
693
+ - type: recall_at_1
694
+ value: 22.349
695
+ - type: recall_at_10
696
+ value: 53.127
697
+ - type: recall_at_100
698
+ value: 77.884
699
+ - type: recall_at_1000
700
+ value: 93.705
701
+ - type: recall_at_3
702
+ value: 38.611000000000004
703
+ - type: recall_at_5
704
+ value: 44.182
705
+ - task:
706
+ type: Retrieval
707
+ dataset:
708
+ name: MTEB CQADupstackRetrieval
709
+ type: mteb/cqadupstack
710
+ config: default
711
+ split: test
712
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
713
+ metrics:
714
+ - type: map_at_1
715
+ value: 25.215749999999996
716
+ - type: map_at_10
717
+ value: 34.332750000000004
718
+ - type: map_at_100
719
+ value: 35.58683333333333
720
+ - type: map_at_1000
721
+ value: 35.70458333333333
722
+ - type: map_at_3
723
+ value: 31.55441666666667
724
+ - type: map_at_5
725
+ value: 33.100833333333334
726
+ - type: mrr_at_1
727
+ value: 29.697250000000004
728
+ - type: mrr_at_10
729
+ value: 38.372249999999994
730
+ - type: mrr_at_100
731
+ value: 39.26708333333334
732
+ - type: mrr_at_1000
733
+ value: 39.3265
734
+ - type: mrr_at_3
735
+ value: 35.946083333333334
736
+ - type: mrr_at_5
737
+ value: 37.336999999999996
738
+ - type: ndcg_at_1
739
+ value: 29.697250000000004
740
+ - type: ndcg_at_10
741
+ value: 39.64575
742
+ - type: ndcg_at_100
743
+ value: 44.996833333333335
744
+ - type: ndcg_at_1000
745
+ value: 47.314499999999995
746
+ - type: ndcg_at_3
747
+ value: 34.93383333333334
748
+ - type: ndcg_at_5
749
+ value: 37.15291666666667
750
+ - type: precision_at_1
751
+ value: 29.697250000000004
752
+ - type: precision_at_10
753
+ value: 6.98825
754
+ - type: precision_at_100
755
+ value: 1.138
756
+ - type: precision_at_1000
757
+ value: 0.15283333333333332
758
+ - type: precision_at_3
759
+ value: 16.115583333333333
760
+ - type: precision_at_5
761
+ value: 11.460916666666666
762
+ - type: recall_at_1
763
+ value: 25.215749999999996
764
+ - type: recall_at_10
765
+ value: 51.261250000000004
766
+ - type: recall_at_100
767
+ value: 74.67258333333334
768
+ - type: recall_at_1000
769
+ value: 90.72033333333334
770
+ - type: recall_at_3
771
+ value: 38.1795
772
+ - type: recall_at_5
773
+ value: 43.90658333333334
774
+ - task:
775
+ type: Retrieval
776
+ dataset:
777
+ name: MTEB CQADupstackStatsRetrieval
778
+ type: mteb/cqadupstack-stats
779
+ config: default
780
+ split: test
781
+ revision: 65ac3a16b8e91f9cee4c9828cc7c335575432a2a
782
+ metrics:
783
+ - type: map_at_1
784
+ value: 24.352
785
+ - type: map_at_10
786
+ value: 30.576999999999998
787
+ - type: map_at_100
788
+ value: 31.545
789
+ - type: map_at_1000
790
+ value: 31.642
791
+ - type: map_at_3
792
+ value: 28.605000000000004
793
+ - type: map_at_5
794
+ value: 29.828
795
+ - type: mrr_at_1
796
+ value: 26.994
797
+ - type: mrr_at_10
798
+ value: 33.151
799
+ - type: mrr_at_100
800
+ value: 33.973
801
+ - type: mrr_at_1000
802
+ value: 34.044999999999995
803
+ - type: mrr_at_3
804
+ value: 31.135
805
+ - type: mrr_at_5
806
+ value: 32.262
807
+ - type: ndcg_at_1
808
+ value: 26.994
809
+ - type: ndcg_at_10
810
+ value: 34.307
811
+ - type: ndcg_at_100
812
+ value: 39.079
813
+ - type: ndcg_at_1000
814
+ value: 41.548
815
+ - type: ndcg_at_3
816
+ value: 30.581000000000003
817
+ - type: ndcg_at_5
818
+ value: 32.541
819
+ - type: precision_at_1
820
+ value: 26.994
821
+ - type: precision_at_10
822
+ value: 5.244999999999999
823
+ - type: precision_at_100
824
+ value: 0.831
825
+ - type: precision_at_1000
826
+ value: 0.11100000000000002
827
+ - type: precision_at_3
828
+ value: 12.781
829
+ - type: precision_at_5
830
+ value: 9.017999999999999
831
+ - type: recall_at_1
832
+ value: 24.352
833
+ - type: recall_at_10
834
+ value: 43.126999999999995
835
+ - type: recall_at_100
836
+ value: 64.845
837
+ - type: recall_at_1000
838
+ value: 83.244
839
+ - type: recall_at_3
840
+ value: 33.308
841
+ - type: recall_at_5
842
+ value: 37.984
843
+ - task:
844
+ type: Retrieval
845
+ dataset:
846
+ name: MTEB CQADupstackTexRetrieval
847
+ type: mteb/cqadupstack-tex
848
+ config: default
849
+ split: test
850
+ revision: 46989137a86843e03a6195de44b09deda022eec7
851
+ metrics:
852
+ - type: map_at_1
853
+ value: 16.592000000000002
854
+ - type: map_at_10
855
+ value: 23.29
856
+ - type: map_at_100
857
+ value: 24.423000000000002
858
+ - type: map_at_1000
859
+ value: 24.554000000000002
860
+ - type: map_at_3
861
+ value: 20.958
862
+ - type: map_at_5
863
+ value: 22.267
864
+ - type: mrr_at_1
865
+ value: 20.061999999999998
866
+ - type: mrr_at_10
867
+ value: 26.973999999999997
868
+ - type: mrr_at_100
869
+ value: 27.944999999999997
870
+ - type: mrr_at_1000
871
+ value: 28.023999999999997
872
+ - type: mrr_at_3
873
+ value: 24.839
874
+ - type: mrr_at_5
875
+ value: 26.033
876
+ - type: ndcg_at_1
877
+ value: 20.061999999999998
878
+ - type: ndcg_at_10
879
+ value: 27.682000000000002
880
+ - type: ndcg_at_100
881
+ value: 33.196
882
+ - type: ndcg_at_1000
883
+ value: 36.246
884
+ - type: ndcg_at_3
885
+ value: 23.559
886
+ - type: ndcg_at_5
887
+ value: 25.507
888
+ - type: precision_at_1
889
+ value: 20.061999999999998
890
+ - type: precision_at_10
891
+ value: 5.086
892
+ - type: precision_at_100
893
+ value: 0.9249999999999999
894
+ - type: precision_at_1000
895
+ value: 0.136
896
+ - type: precision_at_3
897
+ value: 11.046
898
+ - type: precision_at_5
899
+ value: 8.149000000000001
900
+ - type: recall_at_1
901
+ value: 16.592000000000002
902
+ - type: recall_at_10
903
+ value: 37.181999999999995
904
+ - type: recall_at_100
905
+ value: 62.224999999999994
906
+ - type: recall_at_1000
907
+ value: 84.072
908
+ - type: recall_at_3
909
+ value: 25.776
910
+ - type: recall_at_5
911
+ value: 30.680000000000003
912
+ - task:
913
+ type: Retrieval
914
+ dataset:
915
+ name: MTEB CQADupstackUnixRetrieval
916
+ type: mteb/cqadupstack-unix
917
+ config: default
918
+ split: test
919
+ revision: 6c6430d3a6d36f8d2a829195bc5dc94d7e063e53
920
+ metrics:
921
+ - type: map_at_1
922
+ value: 26.035999999999998
923
+ - type: map_at_10
924
+ value: 34.447
925
+ - type: map_at_100
926
+ value: 35.697
927
+ - type: map_at_1000
928
+ value: 35.802
929
+ - type: map_at_3
930
+ value: 31.64
931
+ - type: map_at_5
932
+ value: 33.056999999999995
933
+ - type: mrr_at_1
934
+ value: 29.851
935
+ - type: mrr_at_10
936
+ value: 38.143
937
+ - type: mrr_at_100
938
+ value: 39.113
939
+ - type: mrr_at_1000
940
+ value: 39.175
941
+ - type: mrr_at_3
942
+ value: 35.665
943
+ - type: mrr_at_5
944
+ value: 36.901
945
+ - type: ndcg_at_1
946
+ value: 29.851
947
+ - type: ndcg_at_10
948
+ value: 39.554
949
+ - type: ndcg_at_100
950
+ value: 45.091
951
+ - type: ndcg_at_1000
952
+ value: 47.504000000000005
953
+ - type: ndcg_at_3
954
+ value: 34.414
955
+ - type: ndcg_at_5
956
+ value: 36.508
957
+ - type: precision_at_1
958
+ value: 29.851
959
+ - type: precision_at_10
960
+ value: 6.614000000000001
961
+ - type: precision_at_100
962
+ value: 1.051
963
+ - type: precision_at_1000
964
+ value: 0.13699999999999998
965
+ - type: precision_at_3
966
+ value: 15.329999999999998
967
+ - type: precision_at_5
968
+ value: 10.671999999999999
969
+ - type: recall_at_1
970
+ value: 26.035999999999998
971
+ - type: recall_at_10
972
+ value: 51.396
973
+ - type: recall_at_100
974
+ value: 75.09
975
+ - type: recall_at_1000
976
+ value: 91.904
977
+ - type: recall_at_3
978
+ value: 37.378
979
+ - type: recall_at_5
980
+ value: 42.69
981
+ - task:
982
+ type: Retrieval
983
+ dataset:
984
+ name: MTEB CQADupstackWebmastersRetrieval
985
+ type: mteb/cqadupstack-webmasters
986
+ config: default
987
+ split: test
988
+ revision: 160c094312a0e1facb97e55eeddb698c0abe3571
989
+ metrics:
990
+ - type: map_at_1
991
+ value: 23.211000000000002
992
+ - type: map_at_10
993
+ value: 32.231
994
+ - type: map_at_100
995
+ value: 33.772999999999996
996
+ - type: map_at_1000
997
+ value: 33.982
998
+ - type: map_at_3
999
+ value: 29.128
1000
+ - type: map_at_5
1001
+ value: 31.002999999999997
1002
+ - type: mrr_at_1
1003
+ value: 27.668
1004
+ - type: mrr_at_10
1005
+ value: 36.388
1006
+ - type: mrr_at_100
1007
+ value: 37.384
1008
+ - type: mrr_at_1000
1009
+ value: 37.44
1010
+ - type: mrr_at_3
1011
+ value: 33.762
1012
+ - type: mrr_at_5
1013
+ value: 35.234
1014
+ - type: ndcg_at_1
1015
+ value: 27.668
1016
+ - type: ndcg_at_10
1017
+ value: 38.043
1018
+ - type: ndcg_at_100
1019
+ value: 44.21
1020
+ - type: ndcg_at_1000
1021
+ value: 46.748
1022
+ - type: ndcg_at_3
1023
+ value: 32.981
1024
+ - type: ndcg_at_5
1025
+ value: 35.58
1026
+ - type: precision_at_1
1027
+ value: 27.668
1028
+ - type: precision_at_10
1029
+ value: 7.352
1030
+ - type: precision_at_100
1031
+ value: 1.5
1032
+ - type: precision_at_1000
1033
+ value: 0.23700000000000002
1034
+ - type: precision_at_3
1035
+ value: 15.613
1036
+ - type: precision_at_5
1037
+ value: 11.501999999999999
1038
+ - type: recall_at_1
1039
+ value: 23.211000000000002
1040
+ - type: recall_at_10
1041
+ value: 49.851
1042
+ - type: recall_at_100
1043
+ value: 77.596
1044
+ - type: recall_at_1000
1045
+ value: 93.683
1046
+ - type: recall_at_3
1047
+ value: 35.403
1048
+ - type: recall_at_5
1049
+ value: 42.485
1050
+ - task:
1051
+ type: Retrieval
1052
+ dataset:
1053
+ name: MTEB CQADupstackWordpressRetrieval
1054
+ type: mteb/cqadupstack-wordpress
1055
+ config: default
1056
+ split: test
1057
+ revision: 4ffe81d471b1924886b33c7567bfb200e9eec5c4
1058
+ metrics:
1059
+ - type: map_at_1
1060
+ value: 19.384
1061
+ - type: map_at_10
1062
+ value: 26.262999999999998
1063
+ - type: map_at_100
1064
+ value: 27.409
1065
+ - type: map_at_1000
1066
+ value: 27.526
1067
+ - type: map_at_3
1068
+ value: 23.698
1069
+ - type: map_at_5
1070
+ value: 25.217
1071
+ - type: mrr_at_1
1072
+ value: 20.702
1073
+ - type: mrr_at_10
1074
+ value: 27.810000000000002
1075
+ - type: mrr_at_100
1076
+ value: 28.863
1077
+ - type: mrr_at_1000
1078
+ value: 28.955
1079
+ - type: mrr_at_3
1080
+ value: 25.230999999999998
1081
+ - type: mrr_at_5
1082
+ value: 26.821
1083
+ - type: ndcg_at_1
1084
+ value: 20.702
1085
+ - type: ndcg_at_10
1086
+ value: 30.688
1087
+ - type: ndcg_at_100
1088
+ value: 36.138999999999996
1089
+ - type: ndcg_at_1000
1090
+ value: 38.984
1091
+ - type: ndcg_at_3
1092
+ value: 25.663000000000004
1093
+ - type: ndcg_at_5
1094
+ value: 28.242
1095
+ - type: precision_at_1
1096
+ value: 20.702
1097
+ - type: precision_at_10
1098
+ value: 4.954
1099
+ - type: precision_at_100
1100
+ value: 0.823
1101
+ - type: precision_at_1000
1102
+ value: 0.11800000000000001
1103
+ - type: precision_at_3
1104
+ value: 10.844
1105
+ - type: precision_at_5
1106
+ value: 8.096
1107
+ - type: recall_at_1
1108
+ value: 19.384
1109
+ - type: recall_at_10
1110
+ value: 42.847
1111
+ - type: recall_at_100
1112
+ value: 67.402
1113
+ - type: recall_at_1000
1114
+ value: 88.145
1115
+ - type: recall_at_3
1116
+ value: 29.513
1117
+ - type: recall_at_5
1118
+ value: 35.57
1119
+ - task:
1120
+ type: Retrieval
1121
+ dataset:
1122
+ name: MTEB ClimateFEVER
1123
+ type: mteb/climate-fever
1124
+ config: default
1125
+ split: test
1126
+ revision: 47f2ac6acb640fc46020b02a5b59fdda04d39380
1127
+ metrics:
1128
+ - type: map_at_1
1129
+ value: 14.915000000000001
1130
+ - type: map_at_10
1131
+ value: 25.846999999999998
1132
+ - type: map_at_100
1133
+ value: 27.741
1134
+ - type: map_at_1000
1135
+ value: 27.921000000000003
1136
+ - type: map_at_3
1137
+ value: 21.718
1138
+ - type: map_at_5
1139
+ value: 23.948
1140
+ - type: mrr_at_1
1141
+ value: 33.941
1142
+ - type: mrr_at_10
1143
+ value: 46.897
1144
+ - type: mrr_at_100
1145
+ value: 47.63
1146
+ - type: mrr_at_1000
1147
+ value: 47.658
1148
+ - type: mrr_at_3
1149
+ value: 43.919999999999995
1150
+ - type: mrr_at_5
1151
+ value: 45.783
1152
+ - type: ndcg_at_1
1153
+ value: 33.941
1154
+ - type: ndcg_at_10
1155
+ value: 35.202
1156
+ - type: ndcg_at_100
1157
+ value: 42.132
1158
+ - type: ndcg_at_1000
1159
+ value: 45.190999999999995
1160
+ - type: ndcg_at_3
1161
+ value: 29.68
1162
+ - type: ndcg_at_5
1163
+ value: 31.631999999999998
1164
+ - type: precision_at_1
1165
+ value: 33.941
1166
+ - type: precision_at_10
1167
+ value: 10.906
1168
+ - type: precision_at_100
1169
+ value: 1.8339999999999999
1170
+ - type: precision_at_1000
1171
+ value: 0.241
1172
+ - type: precision_at_3
1173
+ value: 22.606
1174
+ - type: precision_at_5
1175
+ value: 17.081
1176
+ - type: recall_at_1
1177
+ value: 14.915000000000001
1178
+ - type: recall_at_10
1179
+ value: 40.737
1180
+ - type: recall_at_100
1181
+ value: 64.42
1182
+ - type: recall_at_1000
1183
+ value: 81.435
1184
+ - type: recall_at_3
1185
+ value: 26.767000000000003
1186
+ - type: recall_at_5
1187
+ value: 32.895
1188
+ - task:
1189
+ type: Retrieval
1190
+ dataset:
1191
+ name: MTEB DBPedia
1192
+ type: mteb/dbpedia
1193
+ config: default
1194
+ split: test
1195
+ revision: c0f706b76e590d620bd6618b3ca8efdd34e2d659
1196
+ metrics:
1197
+ - type: map_at_1
1198
+ value: 8.665000000000001
1199
+ - type: map_at_10
1200
+ value: 19.087
1201
+ - type: map_at_100
1202
+ value: 26.555
1203
+ - type: map_at_1000
1204
+ value: 28.105999999999998
1205
+ - type: map_at_3
1206
+ value: 13.858999999999998
1207
+ - type: map_at_5
1208
+ value: 16.083
1209
+ - type: mrr_at_1
1210
+ value: 68.5
1211
+ - type: mrr_at_10
1212
+ value: 76.725
1213
+ - type: mrr_at_100
1214
+ value: 76.974
1215
+ - type: mrr_at_1000
1216
+ value: 76.981
1217
+ - type: mrr_at_3
1218
+ value: 75.583
1219
+ - type: mrr_at_5
1220
+ value: 76.208
1221
+ - type: ndcg_at_1
1222
+ value: 55.875
1223
+ - type: ndcg_at_10
1224
+ value: 41.018
1225
+ - type: ndcg_at_100
1226
+ value: 44.982
1227
+ - type: ndcg_at_1000
1228
+ value: 52.43
1229
+ - type: ndcg_at_3
1230
+ value: 46.534
1231
+ - type: ndcg_at_5
1232
+ value: 43.083
1233
+ - type: precision_at_1
1234
+ value: 68.5
1235
+ - type: precision_at_10
1236
+ value: 32.35
1237
+ - type: precision_at_100
1238
+ value: 10.078
1239
+ - type: precision_at_1000
1240
+ value: 1.957
1241
+ - type: precision_at_3
1242
+ value: 50.083
1243
+ - type: precision_at_5
1244
+ value: 41.3
1245
+ - type: recall_at_1
1246
+ value: 8.665000000000001
1247
+ - type: recall_at_10
1248
+ value: 24.596999999999998
1249
+ - type: recall_at_100
1250
+ value: 50.612
1251
+ - type: recall_at_1000
1252
+ value: 74.24
1253
+ - type: recall_at_3
1254
+ value: 15.337
1255
+ - type: recall_at_5
1256
+ value: 18.796
1257
+ - task:
1258
+ type: Classification
1259
+ dataset:
1260
+ name: MTEB EmotionClassification
1261
+ type: mteb/emotion
1262
+ config: default
1263
+ split: test
1264
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1265
+ metrics:
1266
+ - type: accuracy
1267
+ value: 55.06500000000001
1268
+ - type: f1
1269
+ value: 49.827367590822035
1270
+ - task:
1271
+ type: Retrieval
1272
+ dataset:
1273
+ name: MTEB FEVER
1274
+ type: mteb/fever
1275
+ config: default
1276
+ split: test
1277
+ revision: bea83ef9e8fb933d90a2f1d5515737465d613e12
1278
+ metrics:
1279
+ - type: map_at_1
1280
+ value: 76.059
1281
+ - type: map_at_10
1282
+ value: 83.625
1283
+ - type: map_at_100
1284
+ value: 83.845
1285
+ - type: map_at_1000
1286
+ value: 83.858
1287
+ - type: map_at_3
1288
+ value: 82.67099999999999
1289
+ - type: map_at_5
1290
+ value: 83.223
1291
+ - type: mrr_at_1
1292
+ value: 82.013
1293
+ - type: mrr_at_10
1294
+ value: 88.44800000000001
1295
+ - type: mrr_at_100
1296
+ value: 88.535
1297
+ - type: mrr_at_1000
1298
+ value: 88.537
1299
+ - type: mrr_at_3
1300
+ value: 87.854
1301
+ - type: mrr_at_5
1302
+ value: 88.221
1303
+ - type: ndcg_at_1
1304
+ value: 82.013
1305
+ - type: ndcg_at_10
1306
+ value: 87.128
1307
+ - type: ndcg_at_100
1308
+ value: 87.922
1309
+ - type: ndcg_at_1000
1310
+ value: 88.166
1311
+ - type: ndcg_at_3
1312
+ value: 85.648
1313
+ - type: ndcg_at_5
1314
+ value: 86.366
1315
+ - type: precision_at_1
1316
+ value: 82.013
1317
+ - type: precision_at_10
1318
+ value: 10.32
1319
+ - type: precision_at_100
1320
+ value: 1.093
1321
+ - type: precision_at_1000
1322
+ value: 0.11299999999999999
1323
+ - type: precision_at_3
1324
+ value: 32.408
1325
+ - type: precision_at_5
1326
+ value: 19.973
1327
+ - type: recall_at_1
1328
+ value: 76.059
1329
+ - type: recall_at_10
1330
+ value: 93.229
1331
+ - type: recall_at_100
1332
+ value: 96.387
1333
+ - type: recall_at_1000
1334
+ value: 97.916
1335
+ - type: recall_at_3
1336
+ value: 89.025
1337
+ - type: recall_at_5
1338
+ value: 90.96300000000001
1339
+ - task:
1340
+ type: Retrieval
1341
+ dataset:
1342
+ name: MTEB FiQA2018
1343
+ type: mteb/fiqa
1344
+ config: default
1345
+ split: test
1346
+ revision: 27a168819829fe9bcd655c2df245fb19452e8e06
1347
+ metrics:
1348
+ - type: map_at_1
1349
+ value: 20.479
1350
+ - type: map_at_10
1351
+ value: 33.109
1352
+ - type: map_at_100
1353
+ value: 34.803
1354
+ - type: map_at_1000
1355
+ value: 35.003
1356
+ - type: map_at_3
1357
+ value: 28.967
1358
+ - type: map_at_5
1359
+ value: 31.385
1360
+ - type: mrr_at_1
1361
+ value: 40.278000000000006
1362
+ - type: mrr_at_10
1363
+ value: 48.929
1364
+ - type: mrr_at_100
1365
+ value: 49.655
1366
+ - type: mrr_at_1000
1367
+ value: 49.691
1368
+ - type: mrr_at_3
1369
+ value: 46.605000000000004
1370
+ - type: mrr_at_5
1371
+ value: 48.056
1372
+ - type: ndcg_at_1
1373
+ value: 40.278000000000006
1374
+ - type: ndcg_at_10
1375
+ value: 40.649
1376
+ - type: ndcg_at_100
1377
+ value: 47.027
1378
+ - type: ndcg_at_1000
1379
+ value: 50.249
1380
+ - type: ndcg_at_3
1381
+ value: 37.364000000000004
1382
+ - type: ndcg_at_5
1383
+ value: 38.494
1384
+ - type: precision_at_1
1385
+ value: 40.278000000000006
1386
+ - type: precision_at_10
1387
+ value: 11.327
1388
+ - type: precision_at_100
1389
+ value: 1.802
1390
+ - type: precision_at_1000
1391
+ value: 0.23700000000000002
1392
+ - type: precision_at_3
1393
+ value: 25.102999999999998
1394
+ - type: precision_at_5
1395
+ value: 18.457
1396
+ - type: recall_at_1
1397
+ value: 20.479
1398
+ - type: recall_at_10
1399
+ value: 46.594
1400
+ - type: recall_at_100
1401
+ value: 71.101
1402
+ - type: recall_at_1000
1403
+ value: 90.31099999999999
1404
+ - type: recall_at_3
1405
+ value: 33.378
1406
+ - type: recall_at_5
1407
+ value: 39.587
1408
+ - task:
1409
+ type: Retrieval
1410
+ dataset:
1411
+ name: MTEB HotpotQA
1412
+ type: mteb/hotpotqa
1413
+ config: default
1414
+ split: test
1415
+ revision: ab518f4d6fcca38d87c25209f94beba119d02014
1416
+ metrics:
1417
+ - type: map_at_1
1418
+ value: 36.59
1419
+ - type: map_at_10
1420
+ value: 58.178
1421
+ - type: map_at_100
1422
+ value: 59.095
1423
+ - type: map_at_1000
1424
+ value: 59.16400000000001
1425
+ - type: map_at_3
1426
+ value: 54.907
1427
+ - type: map_at_5
1428
+ value: 56.89999999999999
1429
+ - type: mrr_at_1
1430
+ value: 73.18
1431
+ - type: mrr_at_10
1432
+ value: 79.935
1433
+ - type: mrr_at_100
1434
+ value: 80.16799999999999
1435
+ - type: mrr_at_1000
1436
+ value: 80.17800000000001
1437
+ - type: mrr_at_3
1438
+ value: 78.776
1439
+ - type: mrr_at_5
1440
+ value: 79.522
1441
+ - type: ndcg_at_1
1442
+ value: 73.18
1443
+ - type: ndcg_at_10
1444
+ value: 66.538
1445
+ - type: ndcg_at_100
1446
+ value: 69.78
1447
+ - type: ndcg_at_1000
1448
+ value: 71.102
1449
+ - type: ndcg_at_3
1450
+ value: 61.739
1451
+ - type: ndcg_at_5
1452
+ value: 64.35600000000001
1453
+ - type: precision_at_1
1454
+ value: 73.18
1455
+ - type: precision_at_10
1456
+ value: 14.035
1457
+ - type: precision_at_100
1458
+ value: 1.657
1459
+ - type: precision_at_1000
1460
+ value: 0.183
1461
+ - type: precision_at_3
1462
+ value: 39.684999999999995
1463
+ - type: precision_at_5
1464
+ value: 25.885
1465
+ - type: recall_at_1
1466
+ value: 36.59
1467
+ - type: recall_at_10
1468
+ value: 70.176
1469
+ - type: recall_at_100
1470
+ value: 82.836
1471
+ - type: recall_at_1000
1472
+ value: 91.526
1473
+ - type: recall_at_3
1474
+ value: 59.526999999999994
1475
+ - type: recall_at_5
1476
+ value: 64.713
1477
+ - task:
1478
+ type: Classification
1479
+ dataset:
1480
+ name: MTEB ImdbClassification
1481
+ type: mteb/imdb
1482
+ config: default
1483
+ split: test
1484
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1485
+ metrics:
1486
+ - type: accuracy
1487
+ value: 90.1472
1488
+ - type: ap
1489
+ value: 85.73994227076815
1490
+ - type: f1
1491
+ value: 90.1271700788608
1492
+ - task:
1493
+ type: Retrieval
1494
+ dataset:
1495
+ name: MTEB MSMARCO
1496
+ type: mteb/msmarco
1497
+ config: default
1498
+ split: dev
1499
+ revision: c5a29a104738b98a9e76336939199e264163d4a0
1500
+ metrics:
1501
+ - type: map_at_1
1502
+ value: 21.689
1503
+ - type: map_at_10
1504
+ value: 33.518
1505
+ - type: map_at_100
1506
+ value: 34.715
1507
+ - type: map_at_1000
1508
+ value: 34.766000000000005
1509
+ - type: map_at_3
1510
+ value: 29.781000000000002
1511
+ - type: map_at_5
1512
+ value: 31.838
1513
+ - type: mrr_at_1
1514
+ value: 22.249
1515
+ - type: mrr_at_10
1516
+ value: 34.085
1517
+ - type: mrr_at_100
1518
+ value: 35.223
1519
+ - type: mrr_at_1000
1520
+ value: 35.266999999999996
1521
+ - type: mrr_at_3
1522
+ value: 30.398999999999997
1523
+ - type: mrr_at_5
1524
+ value: 32.437
1525
+ - type: ndcg_at_1
1526
+ value: 22.249
1527
+ - type: ndcg_at_10
1528
+ value: 40.227000000000004
1529
+ - type: ndcg_at_100
1530
+ value: 45.961999999999996
1531
+ - type: ndcg_at_1000
1532
+ value: 47.248000000000005
1533
+ - type: ndcg_at_3
1534
+ value: 32.566
1535
+ - type: ndcg_at_5
1536
+ value: 36.229
1537
+ - type: precision_at_1
1538
+ value: 22.249
1539
+ - type: precision_at_10
1540
+ value: 6.358
1541
+ - type: precision_at_100
1542
+ value: 0.923
1543
+ - type: precision_at_1000
1544
+ value: 0.10300000000000001
1545
+ - type: precision_at_3
1546
+ value: 13.83
1547
+ - type: precision_at_5
1548
+ value: 10.145999999999999
1549
+ - type: recall_at_1
1550
+ value: 21.689
1551
+ - type: recall_at_10
1552
+ value: 60.92999999999999
1553
+ - type: recall_at_100
1554
+ value: 87.40599999999999
1555
+ - type: recall_at_1000
1556
+ value: 97.283
1557
+ - type: recall_at_3
1558
+ value: 40.01
1559
+ - type: recall_at_5
1560
+ value: 48.776
1561
+ - task:
1562
+ type: Classification
1563
+ dataset:
1564
+ name: MTEB MTOPDomainClassification (en)
1565
+ type: mteb/mtop_domain
1566
+ config: en
1567
+ split: test
1568
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1569
+ metrics:
1570
+ - type: accuracy
1571
+ value: 95.28727770177838
1572
+ - type: f1
1573
+ value: 95.02577308660041
1574
+ - task:
1575
+ type: Classification
1576
+ dataset:
1577
+ name: MTEB MTOPIntentClassification (en)
1578
+ type: mteb/mtop_intent
1579
+ config: en
1580
+ split: test
1581
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1582
+ metrics:
1583
+ - type: accuracy
1584
+ value: 79.5736434108527
1585
+ - type: f1
1586
+ value: 61.2451202054398
1587
+ - task:
1588
+ type: Classification
1589
+ dataset:
1590
+ name: MTEB MassiveIntentClassification (en)
1591
+ type: mteb/amazon_massive_intent
1592
+ config: en
1593
+ split: test
1594
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1595
+ metrics:
1596
+ - type: accuracy
1597
+ value: 76.01210490921318
1598
+ - type: f1
1599
+ value: 73.70188053982473
1600
+ - task:
1601
+ type: Classification
1602
+ dataset:
1603
+ name: MTEB MassiveScenarioClassification (en)
1604
+ type: mteb/amazon_massive_scenario
1605
+ config: en
1606
+ split: test
1607
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1608
+ metrics:
1609
+ - type: accuracy
1610
+ value: 79.33422999327504
1611
+ - type: f1
1612
+ value: 79.48369022509658
1613
+ - task:
1614
+ type: Clustering
1615
+ dataset:
1616
+ name: MTEB MedrxivClusteringP2P
1617
+ type: mteb/medrxiv-clustering-p2p
1618
+ config: default
1619
+ split: test
1620
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1621
+ metrics:
1622
+ - type: v_measure
1623
+ value: 34.70891567267726
1624
+ - task:
1625
+ type: Clustering
1626
+ dataset:
1627
+ name: MTEB MedrxivClusteringS2S
1628
+ type: mteb/medrxiv-clustering-s2s
1629
+ config: default
1630
+ split: test
1631
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1632
+ metrics:
1633
+ - type: v_measure
1634
+ value: 32.15203494451706
1635
+ - task:
1636
+ type: Reranking
1637
+ dataset:
1638
+ name: MTEB MindSmallReranking
1639
+ type: mteb/mind_small
1640
+ config: default
1641
+ split: test
1642
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1643
+ metrics:
1644
+ - type: map
1645
+ value: 31.919517862194173
1646
+ - type: mrr
1647
+ value: 33.15466289140483
1648
+ - task:
1649
+ type: Retrieval
1650
+ dataset:
1651
+ name: MTEB NFCorpus
1652
+ type: mteb/nfcorpus
1653
+ config: default
1654
+ split: test
1655
+ revision: ec0fa4fe99da2ff19ca1214b7966684033a58814
1656
+ metrics:
1657
+ - type: map_at_1
1658
+ value: 5.992
1659
+ - type: map_at_10
1660
+ value: 13.197000000000001
1661
+ - type: map_at_100
1662
+ value: 16.907
1663
+ - type: map_at_1000
1664
+ value: 18.44
1665
+ - type: map_at_3
1666
+ value: 9.631
1667
+ - type: map_at_5
1668
+ value: 11.243
1669
+ - type: mrr_at_1
1670
+ value: 44.272
1671
+ - type: mrr_at_10
1672
+ value: 53.321
1673
+ - type: mrr_at_100
1674
+ value: 53.903
1675
+ - type: mrr_at_1000
1676
+ value: 53.952999999999996
1677
+ - type: mrr_at_3
1678
+ value: 51.393
1679
+ - type: mrr_at_5
1680
+ value: 52.708999999999996
1681
+ - type: ndcg_at_1
1682
+ value: 42.415000000000006
1683
+ - type: ndcg_at_10
1684
+ value: 34.921
1685
+ - type: ndcg_at_100
1686
+ value: 32.384
1687
+ - type: ndcg_at_1000
1688
+ value: 41.260000000000005
1689
+ - type: ndcg_at_3
1690
+ value: 40.186
1691
+ - type: ndcg_at_5
1692
+ value: 37.89
1693
+ - type: precision_at_1
1694
+ value: 44.272
1695
+ - type: precision_at_10
1696
+ value: 26.006
1697
+ - type: precision_at_100
1698
+ value: 8.44
1699
+ - type: precision_at_1000
1700
+ value: 2.136
1701
+ - type: precision_at_3
1702
+ value: 37.977
1703
+ - type: precision_at_5
1704
+ value: 32.755
1705
+ - type: recall_at_1
1706
+ value: 5.992
1707
+ - type: recall_at_10
1708
+ value: 17.01
1709
+ - type: recall_at_100
1710
+ value: 33.080999999999996
1711
+ - type: recall_at_1000
1712
+ value: 65.054
1713
+ - type: recall_at_3
1714
+ value: 10.528
1715
+ - type: recall_at_5
1716
+ value: 13.233
1717
+ - task:
1718
+ type: Retrieval
1719
+ dataset:
1720
+ name: MTEB NQ
1721
+ type: mteb/nq
1722
+ config: default
1723
+ split: test
1724
+ revision: b774495ed302d8c44a3a7ea25c90dbce03968f31
1725
+ metrics:
1726
+ - type: map_at_1
1727
+ value: 28.871999999999996
1728
+ - type: map_at_10
1729
+ value: 43.286
1730
+ - type: map_at_100
1731
+ value: 44.432
1732
+ - type: map_at_1000
1733
+ value: 44.464999999999996
1734
+ - type: map_at_3
1735
+ value: 38.856
1736
+ - type: map_at_5
1737
+ value: 41.514
1738
+ - type: mrr_at_1
1739
+ value: 32.619
1740
+ - type: mrr_at_10
1741
+ value: 45.75
1742
+ - type: mrr_at_100
1743
+ value: 46.622
1744
+ - type: mrr_at_1000
1745
+ value: 46.646
1746
+ - type: mrr_at_3
1747
+ value: 41.985
1748
+ - type: mrr_at_5
1749
+ value: 44.277
1750
+ - type: ndcg_at_1
1751
+ value: 32.59
1752
+ - type: ndcg_at_10
1753
+ value: 50.895999999999994
1754
+ - type: ndcg_at_100
1755
+ value: 55.711999999999996
1756
+ - type: ndcg_at_1000
1757
+ value: 56.48800000000001
1758
+ - type: ndcg_at_3
1759
+ value: 42.504999999999995
1760
+ - type: ndcg_at_5
1761
+ value: 46.969
1762
+ - type: precision_at_1
1763
+ value: 32.59
1764
+ - type: precision_at_10
1765
+ value: 8.543000000000001
1766
+ - type: precision_at_100
1767
+ value: 1.123
1768
+ - type: precision_at_1000
1769
+ value: 0.12
1770
+ - type: precision_at_3
1771
+ value: 19.448
1772
+ - type: precision_at_5
1773
+ value: 14.218
1774
+ - type: recall_at_1
1775
+ value: 28.871999999999996
1776
+ - type: recall_at_10
1777
+ value: 71.748
1778
+ - type: recall_at_100
1779
+ value: 92.55499999999999
1780
+ - type: recall_at_1000
1781
+ value: 98.327
1782
+ - type: recall_at_3
1783
+ value: 49.944
1784
+ - type: recall_at_5
1785
+ value: 60.291
1786
+ - task:
1787
+ type: Retrieval
1788
+ dataset:
1789
+ name: MTEB QuoraRetrieval
1790
+ type: mteb/quora
1791
+ config: default
1792
+ split: test
1793
+ revision: e4e08e0b7dbe3c8700f0daef558ff32256715259
1794
+ metrics:
1795
+ - type: map_at_1
1796
+ value: 70.664
1797
+ - type: map_at_10
1798
+ value: 84.681
1799
+ - type: map_at_100
1800
+ value: 85.289
1801
+ - type: map_at_1000
1802
+ value: 85.306
1803
+ - type: map_at_3
1804
+ value: 81.719
1805
+ - type: map_at_5
1806
+ value: 83.601
1807
+ - type: mrr_at_1
1808
+ value: 81.35
1809
+ - type: mrr_at_10
1810
+ value: 87.591
1811
+ - type: mrr_at_100
1812
+ value: 87.691
1813
+ - type: mrr_at_1000
1814
+ value: 87.693
1815
+ - type: mrr_at_3
1816
+ value: 86.675
1817
+ - type: mrr_at_5
1818
+ value: 87.29299999999999
1819
+ - type: ndcg_at_1
1820
+ value: 81.33
1821
+ - type: ndcg_at_10
1822
+ value: 88.411
1823
+ - type: ndcg_at_100
1824
+ value: 89.579
1825
+ - type: ndcg_at_1000
1826
+ value: 89.687
1827
+ - type: ndcg_at_3
1828
+ value: 85.613
1829
+ - type: ndcg_at_5
1830
+ value: 87.17
1831
+ - type: precision_at_1
1832
+ value: 81.33
1833
+ - type: precision_at_10
1834
+ value: 13.422
1835
+ - type: precision_at_100
1836
+ value: 1.5270000000000001
1837
+ - type: precision_at_1000
1838
+ value: 0.157
1839
+ - type: precision_at_3
1840
+ value: 37.463
1841
+ - type: precision_at_5
1842
+ value: 24.646
1843
+ - type: recall_at_1
1844
+ value: 70.664
1845
+ - type: recall_at_10
1846
+ value: 95.54
1847
+ - type: recall_at_100
1848
+ value: 99.496
1849
+ - type: recall_at_1000
1850
+ value: 99.978
1851
+ - type: recall_at_3
1852
+ value: 87.481
1853
+ - type: recall_at_5
1854
+ value: 91.88499999999999
1855
+ - task:
1856
+ type: Clustering
1857
+ dataset:
1858
+ name: MTEB RedditClustering
1859
+ type: mteb/reddit-clustering
1860
+ config: default
1861
+ split: test
1862
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1863
+ metrics:
1864
+ - type: v_measure
1865
+ value: 55.40341814991112
1866
+ - task:
1867
+ type: Clustering
1868
+ dataset:
1869
+ name: MTEB RedditClusteringP2P
1870
+ type: mteb/reddit-clustering-p2p
1871
+ config: default
1872
+ split: test
1873
+ revision: 385e3cb46b4cfa89021f56c4380204149d0efe33
1874
+ metrics:
1875
+ - type: v_measure
1876
+ value: 61.231318481346655
1877
+ - task:
1878
+ type: Retrieval
1879
+ dataset:
1880
+ name: MTEB SCIDOCS
1881
+ type: mteb/scidocs
1882
+ config: default
1883
+ split: test
1884
+ revision: f8c2fcf00f625baaa80f62ec5bd9e1fff3b8ae88
1885
+ metrics:
1886
+ - type: map_at_1
1887
+ value: 4.833
1888
+ - type: map_at_10
1889
+ value: 13.149
1890
+ - type: map_at_100
1891
+ value: 15.578
1892
+ - type: map_at_1000
1893
+ value: 15.963
1894
+ - type: map_at_3
1895
+ value: 9.269
1896
+ - type: map_at_5
1897
+ value: 11.182
1898
+ - type: mrr_at_1
1899
+ value: 23.9
1900
+ - type: mrr_at_10
1901
+ value: 35.978
1902
+ - type: mrr_at_100
1903
+ value: 37.076
1904
+ - type: mrr_at_1000
1905
+ value: 37.126
1906
+ - type: mrr_at_3
1907
+ value: 32.333
1908
+ - type: mrr_at_5
1909
+ value: 34.413
1910
+ - type: ndcg_at_1
1911
+ value: 23.9
1912
+ - type: ndcg_at_10
1913
+ value: 21.823
1914
+ - type: ndcg_at_100
1915
+ value: 30.833
1916
+ - type: ndcg_at_1000
1917
+ value: 36.991
1918
+ - type: ndcg_at_3
1919
+ value: 20.465
1920
+ - type: ndcg_at_5
1921
+ value: 17.965999999999998
1922
+ - type: precision_at_1
1923
+ value: 23.9
1924
+ - type: precision_at_10
1925
+ value: 11.49
1926
+ - type: precision_at_100
1927
+ value: 2.444
1928
+ - type: precision_at_1000
1929
+ value: 0.392
1930
+ - type: precision_at_3
1931
+ value: 19.3
1932
+ - type: precision_at_5
1933
+ value: 15.959999999999999
1934
+ - type: recall_at_1
1935
+ value: 4.833
1936
+ - type: recall_at_10
1937
+ value: 23.294999999999998
1938
+ - type: recall_at_100
1939
+ value: 49.63
1940
+ - type: recall_at_1000
1941
+ value: 79.49199999999999
1942
+ - type: recall_at_3
1943
+ value: 11.732
1944
+ - type: recall_at_5
1945
+ value: 16.167
1946
+ - task:
1947
+ type: STS
1948
+ dataset:
1949
+ name: MTEB SICK-R
1950
+ type: mteb/sickr-sts
1951
+ config: default
1952
+ split: test
1953
+ revision: 20a6d6f312dd54037fe07a32d58e5e168867909d
1954
+ metrics:
1955
+ - type: cos_sim_pearson
1956
+ value: 85.62938108735759
1957
+ - type: cos_sim_spearman
1958
+ value: 80.30777094408789
1959
+ - type: euclidean_pearson
1960
+ value: 82.94516686659536
1961
+ - type: euclidean_spearman
1962
+ value: 80.34489663248169
1963
+ - type: manhattan_pearson
1964
+ value: 82.85830094736245
1965
+ - type: manhattan_spearman
1966
+ value: 80.24902623215449
1967
+ - task:
1968
+ type: STS
1969
+ dataset:
1970
+ name: MTEB STS12
1971
+ type: mteb/sts12-sts
1972
+ config: default
1973
+ split: test
1974
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1975
+ metrics:
1976
+ - type: cos_sim_pearson
1977
+ value: 85.23777464247604
1978
+ - type: cos_sim_spearman
1979
+ value: 75.75714864112797
1980
+ - type: euclidean_pearson
1981
+ value: 82.33806918604493
1982
+ - type: euclidean_spearman
1983
+ value: 75.45282124387357
1984
+ - type: manhattan_pearson
1985
+ value: 82.32555620660538
1986
+ - type: manhattan_spearman
1987
+ value: 75.49228731684082
1988
+ - task:
1989
+ type: STS
1990
+ dataset:
1991
+ name: MTEB STS13
1992
+ type: mteb/sts13-sts
1993
+ config: default
1994
+ split: test
1995
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1996
+ metrics:
1997
+ - type: cos_sim_pearson
1998
+ value: 84.88151620954451
1999
+ - type: cos_sim_spearman
2000
+ value: 86.08377598473446
2001
+ - type: euclidean_pearson
2002
+ value: 85.36958329369413
2003
+ - type: euclidean_spearman
2004
+ value: 86.10274219670679
2005
+ - type: manhattan_pearson
2006
+ value: 85.25873897594711
2007
+ - type: manhattan_spearman
2008
+ value: 85.98096461661584
2009
+ - task:
2010
+ type: STS
2011
+ dataset:
2012
+ name: MTEB STS14
2013
+ type: mteb/sts14-sts
2014
+ config: default
2015
+ split: test
2016
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2017
+ metrics:
2018
+ - type: cos_sim_pearson
2019
+ value: 84.29360558735978
2020
+ - type: cos_sim_spearman
2021
+ value: 82.28284203795577
2022
+ - type: euclidean_pearson
2023
+ value: 83.81636655536633
2024
+ - type: euclidean_spearman
2025
+ value: 82.24340438530236
2026
+ - type: manhattan_pearson
2027
+ value: 83.83914453428608
2028
+ - type: manhattan_spearman
2029
+ value: 82.28391354080694
2030
+ - task:
2031
+ type: STS
2032
+ dataset:
2033
+ name: MTEB STS15
2034
+ type: mteb/sts15-sts
2035
+ config: default
2036
+ split: test
2037
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2038
+ metrics:
2039
+ - type: cos_sim_pearson
2040
+ value: 87.47344180426744
2041
+ - type: cos_sim_spearman
2042
+ value: 88.90045649789438
2043
+ - type: euclidean_pearson
2044
+ value: 88.43020815961273
2045
+ - type: euclidean_spearman
2046
+ value: 89.0087449011776
2047
+ - type: manhattan_pearson
2048
+ value: 88.37601826505525
2049
+ - type: manhattan_spearman
2050
+ value: 88.96756360690617
2051
+ - task:
2052
+ type: STS
2053
+ dataset:
2054
+ name: MTEB STS16
2055
+ type: mteb/sts16-sts
2056
+ config: default
2057
+ split: test
2058
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2059
+ metrics:
2060
+ - type: cos_sim_pearson
2061
+ value: 83.35997025304613
2062
+ - type: cos_sim_spearman
2063
+ value: 85.18237675717147
2064
+ - type: euclidean_pearson
2065
+ value: 84.46478196990202
2066
+ - type: euclidean_spearman
2067
+ value: 85.27748677712205
2068
+ - type: manhattan_pearson
2069
+ value: 84.29342543953123
2070
+ - type: manhattan_spearman
2071
+ value: 85.10579612516567
2072
+ - task:
2073
+ type: STS
2074
+ dataset:
2075
+ name: MTEB STS17 (en-en)
2076
+ type: mteb/sts17-crosslingual-sts
2077
+ config: en-en
2078
+ split: test
2079
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2080
+ metrics:
2081
+ - type: cos_sim_pearson
2082
+ value: 88.56668329596836
2083
+ - type: cos_sim_spearman
2084
+ value: 88.72837234129177
2085
+ - type: euclidean_pearson
2086
+ value: 89.39395650897828
2087
+ - type: euclidean_spearman
2088
+ value: 88.82001247906778
2089
+ - type: manhattan_pearson
2090
+ value: 89.41735354368878
2091
+ - type: manhattan_spearman
2092
+ value: 88.95159141850039
2093
+ - task:
2094
+ type: STS
2095
+ dataset:
2096
+ name: MTEB STS22 (en)
2097
+ type: mteb/sts22-crosslingual-sts
2098
+ config: en
2099
+ split: test
2100
+ revision: eea2b4fe26a775864c896887d910b76a8098ad3f
2101
+ metrics:
2102
+ - type: cos_sim_pearson
2103
+ value: 67.466167902991
2104
+ - type: cos_sim_spearman
2105
+ value: 68.54466147197274
2106
+ - type: euclidean_pearson
2107
+ value: 69.35551179564695
2108
+ - type: euclidean_spearman
2109
+ value: 68.75455717749132
2110
+ - type: manhattan_pearson
2111
+ value: 69.42432368208264
2112
+ - type: manhattan_spearman
2113
+ value: 68.83203709670562
2114
+ - task:
2115
+ type: STS
2116
+ dataset:
2117
+ name: MTEB STSBenchmark
2118
+ type: mteb/stsbenchmark-sts
2119
+ config: default
2120
+ split: test
2121
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2122
+ metrics:
2123
+ - type: cos_sim_pearson
2124
+ value: 85.33241300373689
2125
+ - type: cos_sim_spearman
2126
+ value: 86.97909372129874
2127
+ - type: euclidean_pearson
2128
+ value: 86.99526113559924
2129
+ - type: euclidean_spearman
2130
+ value: 87.02644372623219
2131
+ - type: manhattan_pearson
2132
+ value: 86.78744182759846
2133
+ - type: manhattan_spearman
2134
+ value: 86.8886180198196
2135
+ - task:
2136
+ type: Reranking
2137
+ dataset:
2138
+ name: MTEB SciDocsRR
2139
+ type: mteb/scidocs-reranking
2140
+ config: default
2141
+ split: test
2142
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2143
+ metrics:
2144
+ - type: map
2145
+ value: 86.18374413668717
2146
+ - type: mrr
2147
+ value: 95.93213068703264
2148
+ - task:
2149
+ type: Retrieval
2150
+ dataset:
2151
+ name: MTEB SciFact
2152
+ type: mteb/scifact
2153
+ config: default
2154
+ split: test
2155
+ revision: 0228b52cf27578f30900b9e5271d331663a030d7
2156
+ metrics:
2157
+ - type: map_at_1
2158
+ value: 58.31699999999999
2159
+ - type: map_at_10
2160
+ value: 67.691
2161
+ - type: map_at_100
2162
+ value: 68.201
2163
+ - type: map_at_1000
2164
+ value: 68.232
2165
+ - type: map_at_3
2166
+ value: 64.47800000000001
2167
+ - type: map_at_5
2168
+ value: 66.51
2169
+ - type: mrr_at_1
2170
+ value: 61.0
2171
+ - type: mrr_at_10
2172
+ value: 68.621
2173
+ - type: mrr_at_100
2174
+ value: 68.973
2175
+ - type: mrr_at_1000
2176
+ value: 69.002
2177
+ - type: mrr_at_3
2178
+ value: 66.111
2179
+ - type: mrr_at_5
2180
+ value: 67.578
2181
+ - type: ndcg_at_1
2182
+ value: 61.0
2183
+ - type: ndcg_at_10
2184
+ value: 72.219
2185
+ - type: ndcg_at_100
2186
+ value: 74.397
2187
+ - type: ndcg_at_1000
2188
+ value: 75.021
2189
+ - type: ndcg_at_3
2190
+ value: 66.747
2191
+ - type: ndcg_at_5
2192
+ value: 69.609
2193
+ - type: precision_at_1
2194
+ value: 61.0
2195
+ - type: precision_at_10
2196
+ value: 9.6
2197
+ - type: precision_at_100
2198
+ value: 1.08
2199
+ - type: precision_at_1000
2200
+ value: 0.11299999999999999
2201
+ - type: precision_at_3
2202
+ value: 25.667
2203
+ - type: precision_at_5
2204
+ value: 17.267
2205
+ - type: recall_at_1
2206
+ value: 58.31699999999999
2207
+ - type: recall_at_10
2208
+ value: 85.233
2209
+ - type: recall_at_100
2210
+ value: 95.167
2211
+ - type: recall_at_1000
2212
+ value: 99.667
2213
+ - type: recall_at_3
2214
+ value: 70.589
2215
+ - type: recall_at_5
2216
+ value: 77.628
2217
+ - task:
2218
+ type: PairClassification
2219
+ dataset:
2220
+ name: MTEB SprintDuplicateQuestions
2221
+ type: mteb/sprintduplicatequestions-pairclassification
2222
+ config: default
2223
+ split: test
2224
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2225
+ metrics:
2226
+ - type: cos_sim_accuracy
2227
+ value: 99.83267326732673
2228
+ - type: cos_sim_ap
2229
+ value: 96.13707107038228
2230
+ - type: cos_sim_f1
2231
+ value: 91.48830263812842
2232
+ - type: cos_sim_precision
2233
+ value: 91.0802775024777
2234
+ - type: cos_sim_recall
2235
+ value: 91.9
2236
+ - type: dot_accuracy
2237
+ value: 99.83069306930693
2238
+ - type: dot_ap
2239
+ value: 96.21199069147254
2240
+ - type: dot_f1
2241
+ value: 91.36295556665004
2242
+ - type: dot_precision
2243
+ value: 91.22632103688933
2244
+ - type: dot_recall
2245
+ value: 91.5
2246
+ - type: euclidean_accuracy
2247
+ value: 99.83267326732673
2248
+ - type: euclidean_ap
2249
+ value: 96.08957801367436
2250
+ - type: euclidean_f1
2251
+ value: 91.33004926108374
2252
+ - type: euclidean_precision
2253
+ value: 90.0
2254
+ - type: euclidean_recall
2255
+ value: 92.7
2256
+ - type: manhattan_accuracy
2257
+ value: 99.83564356435643
2258
+ - type: manhattan_ap
2259
+ value: 96.10534946461945
2260
+ - type: manhattan_f1
2261
+ value: 91.74950298210736
2262
+ - type: manhattan_precision
2263
+ value: 91.20553359683794
2264
+ - type: manhattan_recall
2265
+ value: 92.30000000000001
2266
+ - type: max_accuracy
2267
+ value: 99.83564356435643
2268
+ - type: max_ap
2269
+ value: 96.21199069147254
2270
+ - type: max_f1
2271
+ value: 91.74950298210736
2272
+ - task:
2273
+ type: Clustering
2274
+ dataset:
2275
+ name: MTEB StackExchangeClustering
2276
+ type: mteb/stackexchange-clustering
2277
+ config: default
2278
+ split: test
2279
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2280
+ metrics:
2281
+ - type: v_measure
2282
+ value: 62.045718843534736
2283
+ - task:
2284
+ type: Clustering
2285
+ dataset:
2286
+ name: MTEB StackExchangeClusteringP2P
2287
+ type: mteb/stackexchange-clustering-p2p
2288
+ config: default
2289
+ split: test
2290
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2291
+ metrics:
2292
+ - type: v_measure
2293
+ value: 36.6501777041092
2294
+ - task:
2295
+ type: Reranking
2296
+ dataset:
2297
+ name: MTEB StackOverflowDupQuestions
2298
+ type: mteb/stackoverflowdupquestions-reranking
2299
+ config: default
2300
+ split: test
2301
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2302
+ metrics:
2303
+ - type: map
2304
+ value: 52.963913408053955
2305
+ - type: mrr
2306
+ value: 53.87972423818012
2307
+ - task:
2308
+ type: Summarization
2309
+ dataset:
2310
+ name: MTEB SummEval
2311
+ type: mteb/summeval
2312
+ config: default
2313
+ split: test
2314
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2315
+ metrics:
2316
+ - type: cos_sim_pearson
2317
+ value: 30.44195730764998
2318
+ - type: cos_sim_spearman
2319
+ value: 30.59626288679397
2320
+ - type: dot_pearson
2321
+ value: 30.22974492404086
2322
+ - type: dot_spearman
2323
+ value: 29.345245972906497
2324
+ - task:
2325
+ type: Retrieval
2326
+ dataset:
2327
+ name: MTEB TRECCOVID
2328
+ type: mteb/trec-covid
2329
+ config: default
2330
+ split: test
2331
+ revision: bb9466bac8153a0349341eb1b22e06409e78ef4e
2332
+ metrics:
2333
+ - type: map_at_1
2334
+ value: 0.24
2335
+ - type: map_at_10
2336
+ value: 2.01
2337
+ - type: map_at_100
2338
+ value: 11.928999999999998
2339
+ - type: map_at_1000
2340
+ value: 29.034
2341
+ - type: map_at_3
2342
+ value: 0.679
2343
+ - type: map_at_5
2344
+ value: 1.064
2345
+ - type: mrr_at_1
2346
+ value: 92.0
2347
+ - type: mrr_at_10
2348
+ value: 96.0
2349
+ - type: mrr_at_100
2350
+ value: 96.0
2351
+ - type: mrr_at_1000
2352
+ value: 96.0
2353
+ - type: mrr_at_3
2354
+ value: 96.0
2355
+ - type: mrr_at_5
2356
+ value: 96.0
2357
+ - type: ndcg_at_1
2358
+ value: 87.0
2359
+ - type: ndcg_at_10
2360
+ value: 80.118
2361
+ - type: ndcg_at_100
2362
+ value: 60.753
2363
+ - type: ndcg_at_1000
2364
+ value: 54.632999999999996
2365
+ - type: ndcg_at_3
2366
+ value: 83.073
2367
+ - type: ndcg_at_5
2368
+ value: 80.733
2369
+ - type: precision_at_1
2370
+ value: 92.0
2371
+ - type: precision_at_10
2372
+ value: 84.8
2373
+ - type: precision_at_100
2374
+ value: 62.019999999999996
2375
+ - type: precision_at_1000
2376
+ value: 24.028
2377
+ - type: precision_at_3
2378
+ value: 87.333
2379
+ - type: precision_at_5
2380
+ value: 85.2
2381
+ - type: recall_at_1
2382
+ value: 0.24
2383
+ - type: recall_at_10
2384
+ value: 2.205
2385
+ - type: recall_at_100
2386
+ value: 15.068000000000001
2387
+ - type: recall_at_1000
2388
+ value: 51.796
2389
+ - type: recall_at_3
2390
+ value: 0.698
2391
+ - type: recall_at_5
2392
+ value: 1.1199999999999999
2393
+ - task:
2394
+ type: Retrieval
2395
+ dataset:
2396
+ name: MTEB Touche2020
2397
+ type: mteb/touche2020
2398
+ config: default
2399
+ split: test
2400
+ revision: a34f9a33db75fa0cbb21bb5cfc3dae8dc8bec93f
2401
+ metrics:
2402
+ - type: map_at_1
2403
+ value: 3.066
2404
+ - type: map_at_10
2405
+ value: 9.219
2406
+ - type: map_at_100
2407
+ value: 15.387
2408
+ - type: map_at_1000
2409
+ value: 16.957
2410
+ - type: map_at_3
2411
+ value: 5.146
2412
+ - type: map_at_5
2413
+ value: 6.6739999999999995
2414
+ - type: mrr_at_1
2415
+ value: 40.816
2416
+ - type: mrr_at_10
2417
+ value: 50.844
2418
+ - type: mrr_at_100
2419
+ value: 51.664
2420
+ - type: mrr_at_1000
2421
+ value: 51.664
2422
+ - type: mrr_at_3
2423
+ value: 46.259
2424
+ - type: mrr_at_5
2425
+ value: 49.116
2426
+ - type: ndcg_at_1
2427
+ value: 37.755
2428
+ - type: ndcg_at_10
2429
+ value: 23.477
2430
+ - type: ndcg_at_100
2431
+ value: 36.268
2432
+ - type: ndcg_at_1000
2433
+ value: 47.946
2434
+ - type: ndcg_at_3
2435
+ value: 25.832
2436
+ - type: ndcg_at_5
2437
+ value: 24.235
2438
+ - type: precision_at_1
2439
+ value: 40.816
2440
+ - type: precision_at_10
2441
+ value: 20.204
2442
+ - type: precision_at_100
2443
+ value: 7.611999999999999
2444
+ - type: precision_at_1000
2445
+ value: 1.543
2446
+ - type: precision_at_3
2447
+ value: 25.169999999999998
2448
+ - type: precision_at_5
2449
+ value: 23.265
2450
+ - type: recall_at_1
2451
+ value: 3.066
2452
+ - type: recall_at_10
2453
+ value: 14.985999999999999
2454
+ - type: recall_at_100
2455
+ value: 47.902
2456
+ - type: recall_at_1000
2457
+ value: 83.56400000000001
2458
+ - type: recall_at_3
2459
+ value: 5.755
2460
+ - type: recall_at_5
2461
+ value: 8.741999999999999
2462
+ - task:
2463
+ type: Classification
2464
+ dataset:
2465
+ name: MTEB ToxicConversationsClassification
2466
+ type: mteb/toxic_conversations_50k
2467
+ config: default
2468
+ split: test
2469
+ revision: edfaf9da55d3dd50d43143d90c1ac476895ae6de
2470
+ metrics:
2471
+ - type: accuracy
2472
+ value: 69.437
2473
+ - type: ap
2474
+ value: 12.844066827082706
2475
+ - type: f1
2476
+ value: 52.74974809872495
2477
+ - task:
2478
+ type: Classification
2479
+ dataset:
2480
+ name: MTEB TweetSentimentExtractionClassification
2481
+ type: mteb/tweet_sentiment_extraction
2482
+ config: default
2483
+ split: test
2484
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2485
+ metrics:
2486
+ - type: accuracy
2487
+ value: 61.26768534238823
2488
+ - type: f1
2489
+ value: 61.65100187399282
2490
+ - task:
2491
+ type: Clustering
2492
+ dataset:
2493
+ name: MTEB TwentyNewsgroupsClustering
2494
+ type: mteb/twentynewsgroups-clustering
2495
+ config: default
2496
+ split: test
2497
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2498
+ metrics:
2499
+ - type: v_measure
2500
+ value: 49.860968711078804
2501
+ - task:
2502
+ type: PairClassification
2503
+ dataset:
2504
+ name: MTEB TwitterSemEval2015
2505
+ type: mteb/twittersemeval2015-pairclassification
2506
+ config: default
2507
+ split: test
2508
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2509
+ metrics:
2510
+ - type: cos_sim_accuracy
2511
+ value: 85.7423854085951
2512
+ - type: cos_sim_ap
2513
+ value: 73.47560303339571
2514
+ - type: cos_sim_f1
2515
+ value: 67.372778183589
2516
+ - type: cos_sim_precision
2517
+ value: 62.54520795660036
2518
+ - type: cos_sim_recall
2519
+ value: 73.00791556728232
2520
+ - type: dot_accuracy
2521
+ value: 85.36091077069798
2522
+ - type: dot_ap
2523
+ value: 72.42521572307255
2524
+ - type: dot_f1
2525
+ value: 66.90576304724215
2526
+ - type: dot_precision
2527
+ value: 62.96554934823091
2528
+ - type: dot_recall
2529
+ value: 71.37203166226914
2530
+ - type: euclidean_accuracy
2531
+ value: 85.76026703224653
2532
+ - type: euclidean_ap
2533
+ value: 73.44852563860128
2534
+ - type: euclidean_f1
2535
+ value: 67.3
2536
+ - type: euclidean_precision
2537
+ value: 63.94299287410926
2538
+ - type: euclidean_recall
2539
+ value: 71.02902374670185
2540
+ - type: manhattan_accuracy
2541
+ value: 85.7423854085951
2542
+ - type: manhattan_ap
2543
+ value: 73.2635034755551
2544
+ - type: manhattan_f1
2545
+ value: 67.3180263800684
2546
+ - type: manhattan_precision
2547
+ value: 62.66484765802638
2548
+ - type: manhattan_recall
2549
+ value: 72.71767810026385
2550
+ - type: max_accuracy
2551
+ value: 85.76026703224653
2552
+ - type: max_ap
2553
+ value: 73.47560303339571
2554
+ - type: max_f1
2555
+ value: 67.372778183589
2556
+ - task:
2557
+ type: PairClassification
2558
+ dataset:
2559
+ name: MTEB TwitterURLCorpus
2560
+ type: mteb/twitterurlcorpus-pairclassification
2561
+ config: default
2562
+ split: test
2563
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2564
+ metrics:
2565
+ - type: cos_sim_accuracy
2566
+ value: 88.67543757519307
2567
+ - type: cos_sim_ap
2568
+ value: 85.35516518531304
2569
+ - type: cos_sim_f1
2570
+ value: 77.58197635511934
2571
+ - type: cos_sim_precision
2572
+ value: 75.01078360891445
2573
+ - type: cos_sim_recall
2574
+ value: 80.33569448721897
2575
+ - type: dot_accuracy
2576
+ value: 87.61400240617844
2577
+ - type: dot_ap
2578
+ value: 83.0774968268665
2579
+ - type: dot_f1
2580
+ value: 75.68229012162561
2581
+ - type: dot_precision
2582
+ value: 72.99713876967095
2583
+ - type: dot_recall
2584
+ value: 78.57252848783493
2585
+ - type: euclidean_accuracy
2586
+ value: 88.73753250281368
2587
+ - type: euclidean_ap
2588
+ value: 85.48043564821317
2589
+ - type: euclidean_f1
2590
+ value: 77.75975862719216
2591
+ - type: euclidean_precision
2592
+ value: 76.21054187920456
2593
+ - type: euclidean_recall
2594
+ value: 79.37326763166
2595
+ - type: manhattan_accuracy
2596
+ value: 88.75111576823068
2597
+ - type: manhattan_ap
2598
+ value: 85.44993439423668
2599
+ - type: manhattan_f1
2600
+ value: 77.6861329994845
2601
+ - type: manhattan_precision
2602
+ value: 74.44601270289344
2603
+ - type: manhattan_recall
2604
+ value: 81.22112719433323
2605
+ - type: max_accuracy
2606
+ value: 88.75111576823068
2607
+ - type: max_ap
2608
+ value: 85.48043564821317
2609
+ - type: max_f1
2610
+ value: 77.75975862719216
2611
+ ---
2612
+
2613
+ # twine-network/NoInstruct-small-Embedding-v0-Q8_0-GGUF
2614
+ This model was converted to GGUF format from [`avsolatorio/NoInstruct-small-Embedding-v0`](https://huggingface.co/avsolatorio/NoInstruct-small-Embedding-v0) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
2615
+ Refer to the [original model card](https://huggingface.co/avsolatorio/NoInstruct-small-Embedding-v0) for more details on the model.
2616
+
2617
+ ## Use with llama.cpp
2618
+ Install llama.cpp through brew (works on Mac and Linux)
2619
+
2620
+ ```bash
2621
+ brew install llama.cpp
2622
+
2623
+ ```
2624
+ Invoke the llama.cpp server or the CLI.
2625
+
2626
+ ### CLI:
2627
+ ```bash
2628
+ llama-cli --hf-repo twine-network/NoInstruct-small-Embedding-v0-Q8_0-GGUF --hf-file noinstruct-small-embedding-v0-q8_0.gguf -p "The meaning to life and the universe is"
2629
+ ```
2630
+
2631
+ ### Server:
2632
+ ```bash
2633
+ llama-server --hf-repo twine-network/NoInstruct-small-Embedding-v0-Q8_0-GGUF --hf-file noinstruct-small-embedding-v0-q8_0.gguf -c 2048
2634
+ ```
2635
+
2636
+ Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.
2637
+
2638
+ Step 1: Clone llama.cpp from GitHub.
2639
+ ```
2640
+ git clone https://github.com/ggerganov/llama.cpp
2641
+ ```
2642
+
2643
+ Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
2644
+ ```
2645
+ cd llama.cpp && LLAMA_CURL=1 make
2646
+ ```
2647
+
2648
+ Step 3: Run inference through the main binary.
2649
+ ```
2650
+ ./llama-cli --hf-repo twine-network/NoInstruct-small-Embedding-v0-Q8_0-GGUF --hf-file noinstruct-small-embedding-v0-q8_0.gguf -p "The meaning to life and the universe is"
2651
+ ```
2652
+ or
2653
+ ```
2654
+ ./llama-server --hf-repo twine-network/NoInstruct-small-Embedding-v0-Q8_0-GGUF --hf-file noinstruct-small-embedding-v0-q8_0.gguf -c 2048
2655
+ ```