Migrate model card from transformers-repo
Browse filesRead announcement at https://discuss.huggingface.co/t/announcement-all-model-cards-will-be-migrated-to-hf-co-model-repos/2755
Original file history: https://github.com/huggingface/transformers/commits/master/model_cards/codegram/calbert-base-uncased/README.md
README.md
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: "ca"
|
3 |
+
tags:
|
4 |
+
- masked-lm
|
5 |
+
- catalan
|
6 |
+
- exbert
|
7 |
+
license: mit
|
8 |
+
---
|
9 |
+
|
10 |
+
# Calbert: a Catalan Language Model
|
11 |
+
|
12 |
+
## Introduction
|
13 |
+
|
14 |
+
CALBERT is an open-source language model for Catalan pretrained on the ALBERT architecture.
|
15 |
+
|
16 |
+
It is now available on Hugging Face in its `tiny-uncased` version and `base-uncased` (the one you're looking at) as well, and was pretrained on the [OSCAR dataset](https://traces1.inria.fr/oscar/).
|
17 |
+
|
18 |
+
For further information or requests, please go to the [GitHub repository](https://github.com/codegram/calbert)
|
19 |
+
|
20 |
+
## Pre-trained models
|
21 |
+
|
22 |
+
| Model | Arch. | Training data |
|
23 |
+
| ----------------------------------- | -------------- | ---------------------- |
|
24 |
+
| `codegram` / `calbert-tiny-uncased` | Tiny (uncased) | OSCAR (4.3 GB of text) |
|
25 |
+
| `codegram` / `calbert-base-uncased` | Base (uncased) | OSCAR (4.3 GB of text) |
|
26 |
+
|
27 |
+
## How to use Calbert with HuggingFace
|
28 |
+
|
29 |
+
#### Load Calbert and its tokenizer:
|
30 |
+
|
31 |
+
```python
|
32 |
+
from transformers import AutoModel, AutoTokenizer
|
33 |
+
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained("codegram/calbert-base-uncased")
|
35 |
+
model = AutoModel.from_pretrained("codegram/calbert-base-uncased")
|
36 |
+
|
37 |
+
model.eval() # disable dropout (or leave in train mode to finetune
|
38 |
+
```
|
39 |
+
|
40 |
+
#### Filling masks using pipeline
|
41 |
+
|
42 |
+
```python
|
43 |
+
from transformers import pipeline
|
44 |
+
|
45 |
+
calbert_fill_mask = pipeline("fill-mask", model="codegram/calbert-base-uncased", tokenizer="codegram/calbert-base-uncased")
|
46 |
+
results = calbert_fill_mask("M'agrada [MASK] això")
|
47 |
+
# results
|
48 |
+
# [{'sequence': "[CLS] m'agrada molt aixo[SEP]", 'score': 0.614592969417572, 'token': 61},
|
49 |
+
# {'sequence': "[CLS] m'agrada moltíssim aixo[SEP]", 'score': 0.06058056280016899, 'token': 4867},
|
50 |
+
# {'sequence': "[CLS] m'agrada més aixo[SEP]", 'score': 0.017195818945765495, 'token': 43},
|
51 |
+
# {'sequence': "[CLS] m'agrada llegir aixo[SEP]", 'score': 0.016321714967489243, 'token': 684},
|
52 |
+
# {'sequence': "[CLS] m'agrada escriure aixo[SEP]", 'score': 0.012185849249362946, 'token': 1306}]
|
53 |
+
|
54 |
+
```
|
55 |
+
|
56 |
+
#### Extract contextual embedding features from Calbert output
|
57 |
+
|
58 |
+
```python
|
59 |
+
import torch
|
60 |
+
# Tokenize in sub-words with SentencePiece
|
61 |
+
tokenized_sentence = tokenizer.tokenize("M'és una mica igual")
|
62 |
+
# ['▁m', "'", 'es', '▁una', '▁mica', '▁igual']
|
63 |
+
|
64 |
+
# 1-hot encode and add special starting and end tokens
|
65 |
+
encoded_sentence = tokenizer.encode(tokenized_sentence)
|
66 |
+
# [2, 109, 7, 71, 36, 371, 1103, 3]
|
67 |
+
# NB: Can be done in one step : tokenize.encode("M'és una mica igual")
|
68 |
+
|
69 |
+
# Feed tokens to Calbert as a torch tensor (batch dim 1)
|
70 |
+
encoded_sentence = torch.tensor(encoded_sentence).unsqueeze(0)
|
71 |
+
embeddings, _ = model(encoded_sentence)
|
72 |
+
embeddings.size()
|
73 |
+
# torch.Size([1, 8, 768])
|
74 |
+
embeddings.detach()
|
75 |
+
# tensor([[[-0.0261, 0.1166, -0.1075, ..., -0.0368, 0.0193, 0.0017],
|
76 |
+
# [ 0.1289, -0.2252, 0.9881, ..., -0.1353, 0.3534, 0.0734],
|
77 |
+
# [-0.0328, -1.2364, 0.9466, ..., 0.3455, 0.7010, -0.2085],
|
78 |
+
# ...,
|
79 |
+
# [ 0.0397, -1.0228, -0.2239, ..., 0.2932, 0.1248, 0.0813],
|
80 |
+
# [-0.0261, 0.1165, -0.1074, ..., -0.0368, 0.0193, 0.0017],
|
81 |
+
# [-0.1934, -0.2357, -0.2554, ..., 0.1831, 0.6085, 0.1421]]])
|
82 |
+
```
|
83 |
+
|
84 |
+
## Authors
|
85 |
+
|
86 |
+
CALBERT was trained and evaluated by [Txus Bach](https://twitter.com/txustice), as part of [Codegram](https://www.codegram.com)'s applied research.
|
87 |
+
|
88 |
+
<a href="https://huggingface.co/exbert/?model=codegram/calbert-base-uncased&modelKind=bidirectional&sentence=M%27agradaria%20força%20saber-ne%20més">
|
89 |
+
<img width="300px" src="https://cdn-media.huggingface.co/exbert/button.png">
|
90 |
+
</a>
|