update model card README.md
Browse files
README.md
CHANGED
@@ -21,7 +21,7 @@ model-index:
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
-
value: 0.
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -31,8 +31,8 @@ should probably proofread and complete it, then remove this comment. -->
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/resnet-152](https://huggingface.co/microsoft/resnet-152) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
-
- Loss:
|
35 |
-
- Accuracy: 0.
|
36 |
|
37 |
## Model description
|
38 |
|
@@ -66,16 +66,16 @@ The following hyperparameters were used during training:
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
-
| 2.
|
70 |
-
| 2.
|
71 |
-
|
|
72 |
-
|
|
73 |
-
|
|
74 |
-
|
|
75 |
-
|
|
76 |
-
|
|
77 |
-
|
|
78 |
-
|
|
79 |
|
80 |
|
81 |
### Framework versions
|
|
|
21 |
metrics:
|
22 |
- name: Accuracy
|
23 |
type: accuracy
|
24 |
+
value: 0.7766666666666666
|
25 |
---
|
26 |
|
27 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
31 |
|
32 |
This model is a fine-tuned version of [microsoft/resnet-152](https://huggingface.co/microsoft/resnet-152) on the imagefolder dataset.
|
33 |
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 1.2397
|
35 |
+
- Accuracy: 0.7767
|
36 |
|
37 |
## Model description
|
38 |
|
|
|
66 |
|
67 |
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 2.4803 | 0.99 | 37 | 2.4724 | 0.1133 |
|
70 |
+
| 2.4464 | 1.99 | 74 | 2.4305 | 0.2967 |
|
71 |
+
| 2.3843 | 2.99 | 111 | 2.3658 | 0.4233 |
|
72 |
+
| 2.3018 | 3.99 | 148 | 2.2287 | 0.5067 |
|
73 |
+
| 2.1075 | 4.99 | 185 | 2.0144 | 0.5967 |
|
74 |
+
| 1.8743 | 5.99 | 222 | 1.7228 | 0.65 |
|
75 |
+
| 1.7114 | 6.99 | 259 | 1.5487 | 0.6833 |
|
76 |
+
| 1.5345 | 7.99 | 296 | 1.3920 | 0.7267 |
|
77 |
+
| 1.4471 | 8.99 | 333 | 1.2914 | 0.7333 |
|
78 |
+
| 1.3994 | 9.99 | 370 | 1.2397 | 0.7767 |
|
79 |
|
80 |
|
81 |
### Framework versions
|