File size: 2,447 Bytes
ea3e9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6331d5d
 
 
ea3e9c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
---
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: weeds_hfclass20
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: test
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8696428571428572
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# weeds_hfclass20
Model is trained on imbalanced dataset/ .8 .1 .1 split/ 224x224 resized

Dataset: https://www.kaggle.com/datasets/vbookshelf/v2-plant-seedlings-dataset

This model is a fine-tuned version of [microsoft/resnet-152](https://huggingface.co/microsoft/resnet-152) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4375
- Accuracy: 0.8696

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.444         | 1.0   | 69   | 2.4226          | 0.2018   |
| 2.3378        | 2.0   | 138  | 2.2755          | 0.3268   |
| 1.9474        | 3.0   | 207  | 1.8114          | 0.5286   |
| 1.4306        | 4.0   | 276  | 1.2129          | 0.6571   |
| 0.9848        | 5.0   | 345  | 0.8457          | 0.7536   |
| 0.8489        | 6.0   | 414  | 0.6503          | 0.8      |
| 0.7054        | 7.0   | 483  | 0.5202          | 0.8411   |
| 0.6404        | 8.0   | 552  | 0.5067          | 0.8607   |
| 0.5939        | 9.0   | 621  | 0.4575          | 0.8589   |
| 0.6365        | 10.0  | 690  | 0.4375          | 0.8696   |


### Framework versions

- Transformers 4.26.1
- Pytorch 1.13.1+cu117
- Datasets 2.10.1
- Tokenizers 0.13.2