itshiroto commited on
Commit
e004d20
·
verified ·
1 Parent(s): 4dc0a5a

umn-cyber/indobert-hoax-detection

Browse files
Files changed (5) hide show
  1. README.md +5 -5
  2. all_results.json +14 -14
  3. eval_results.json +9 -9
  4. test_results.json +9 -9
  5. train_results.json +6 -6
README.md CHANGED
@@ -21,11 +21,11 @@ should probably proofread and complete it, then remove this comment. -->
21
 
22
  This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
23
  It achieves the following results on the evaluation set:
24
- - Loss: 0.0480
25
- - Accuracy: 0.9885
26
- - F1: 0.9879
27
- - Precision: 0.9879
28
- - Recall: 0.9879
29
 
30
  ## Model description
31
 
 
21
 
22
  This model is a fine-tuned version of [indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) on an unknown dataset.
23
  It achieves the following results on the evaluation set:
24
+ - Loss: 0.0556
25
+ - Accuracy: 0.9831
26
+ - F1: 0.9823
27
+ - Precision: 0.9781
28
+ - Recall: 0.9865
29
 
30
  ## Model description
31
 
all_results.json CHANGED
@@ -1,16 +1,16 @@
1
  {
2
- "epoch": 5.0,
3
- "eval_accuracy": 0.9847767253044655,
4
- "eval_f1": 0.9839686498040613,
5
- "eval_loss": 0.05431538447737694,
6
- "eval_precision": 0.9857244825124911,
7
- "eval_recall": 0.9822190611664295,
8
- "eval_runtime": 82.271,
9
- "eval_samples_per_second": 35.93,
10
- "eval_steps_per_second": 1.13,
11
- "total_flos": 3.11005644392448e+16,
12
- "train_loss": 0.03474135211743263,
13
- "train_runtime": 19879.8681,
14
- "train_samples_per_second": 5.946,
15
- "train_steps_per_second": 0.186
16
  }
 
1
  {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.983085250338295,
4
+ "eval_f1": 0.9822946175637394,
5
+ "eval_loss": 0.055622417479753494,
6
+ "eval_precision": 0.9781382228490832,
7
+ "eval_recall": 0.9864864864864865,
8
+ "eval_runtime": 83.5515,
9
+ "eval_samples_per_second": 35.379,
10
+ "eval_steps_per_second": 1.113,
11
+ "total_flos": 1.86598360461312e+16,
12
+ "train_loss": 0.0482267698942674,
13
+ "train_runtime": 11974.8731,
14
+ "train_samples_per_second": 5.922,
15
+ "train_steps_per_second": 0.185
16
  }
eval_results.json CHANGED
@@ -1,11 +1,11 @@
1
  {
2
- "epoch": 5.0,
3
- "eval_accuracy": 0.9861252115059221,
4
- "eval_f1": 0.9854144432586268,
5
- "eval_loss": 0.049318719655275345,
6
- "eval_precision": 0.9857651245551602,
7
- "eval_recall": 0.9850640113798008,
8
- "eval_runtime": 82.1767,
9
- "eval_samples_per_second": 35.959,
10
- "eval_steps_per_second": 1.132
11
  }
 
1
  {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.9868020304568528,
4
+ "eval_f1": 0.9861946902654867,
5
+ "eval_loss": 0.04358154907822609,
6
+ "eval_precision": 0.981677237491191,
7
+ "eval_recall": 0.9907539118065434,
8
+ "eval_runtime": 83.335,
9
+ "eval_samples_per_second": 35.459,
10
+ "eval_steps_per_second": 1.116
11
  }
test_results.json CHANGED
@@ -1,11 +1,11 @@
1
  {
2
- "epoch": 5.0,
3
- "eval_accuracy": 0.9847767253044655,
4
- "eval_f1": 0.9839686498040613,
5
- "eval_loss": 0.05431538447737694,
6
- "eval_precision": 0.9857244825124911,
7
- "eval_recall": 0.9822190611664295,
8
- "eval_runtime": 82.271,
9
- "eval_samples_per_second": 35.93,
10
- "eval_steps_per_second": 1.13
11
  }
 
1
  {
2
+ "epoch": 3.0,
3
+ "eval_accuracy": 0.983085250338295,
4
+ "eval_f1": 0.9822946175637394,
5
+ "eval_loss": 0.055622417479753494,
6
+ "eval_precision": 0.9781382228490832,
7
+ "eval_recall": 0.9864864864864865,
8
+ "eval_runtime": 83.5515,
9
+ "eval_samples_per_second": 35.379,
10
+ "eval_steps_per_second": 1.113
11
  }
train_results.json CHANGED
@@ -1,8 +1,8 @@
1
  {
2
- "epoch": 5.0,
3
- "total_flos": 3.11005644392448e+16,
4
- "train_loss": 0.03474135211743263,
5
- "train_runtime": 19879.8681,
6
- "train_samples_per_second": 5.946,
7
- "train_steps_per_second": 0.186
8
  }
 
1
  {
2
+ "epoch": 3.0,
3
+ "total_flos": 1.86598360461312e+16,
4
+ "train_loss": 0.0482267698942674,
5
+ "train_runtime": 11974.8731,
6
+ "train_samples_per_second": 5.922,
7
+ "train_steps_per_second": 0.185
8
  }