File size: 1,546 Bytes
9e3e285
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8d896aa
9e3e285
4420e28
 
9e3e285
 
 
 
4420e28
9e3e285
 
 
 
 
4420e28
c2c7a09
2df6ba9
 
4420e28
2df6ba9
 
 
 
 
c2c7a09
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
---
language: pt
license: mit
tags:
- msmarco
- miniLM
- pytorch
- tensorflow
- pt
- pt-br
datasets:
- msmarco
widget:
- text: "Texto de exemplo em português"
inference: false
---
# mMiniLM-L6-v2 Reranker finetuned on mMARCO
## Introduction
mMiniLM-L6-v2-mmarco-v1 is a multilingual miniLM-based model finetuned on a multilingual version of MS MARCO passage dataset. This dataset, named mMARCO, is formed by passages in 9 different languages, translated from English MS MARCO passages collection.
In the version v1, the datasets were translated using [Helsinki](https://huggingface.co/Helsinki-NLP) NMT model. Further information about the dataset or the translation method can be found on our [**mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset**](https://arxiv.org/abs/2108.13897) and [mMARCO](https://github.com/unicamp-dl/mMARCO) repository.
## Usage
```python
from transformers import AutoTokenizer, AutoModel

model_name = 'unicamp-dl/mMiniLM-L6-v2-mmarco-v1'
tokenizer  = AutoTokenizer.from_pretrained(model_name)
model      = AutoModel.from_pretrained(model_name)

```
# Citation
If you use mMiniLM-L6-v2-mmarco-v1, please cite:

    @misc{bonifacio2021mmarco,
      title={mMARCO: A Multilingual Version of MS MARCO Passage Ranking Dataset}, 
      author={Luiz Henrique Bonifacio and Vitor Jeronymo and Hugo Queiroz Abonizio and Israel Campiotti and Marzieh Fadaee and  and Roberto Lotufo and Rodrigo Nogueira},
      year={2021},
      eprint={2108.13897},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}