sentis-blaze-face / Assets /Scripts /FaceDetection.cs
UnityGiles's picture
clean repo
3868539
using System;
using Unity.Mathematics;
using Unity.Sentis;
using UnityEngine;
public class FaceDetection : MonoBehaviour
{
public FacePreview[] facePreviews;
public ImagePreview imagePreview;
public Texture2D imageTexture;
public ModelAsset faceDetector;
public TextAsset anchorsCSV;
public float iouThreshold = 0.3f;
public float scoreThreshold = 0.5f;
const int k_NumAnchors = 896;
float[,] m_Anchors;
const int k_NumKeypoints = 6;
const int detectorInputSize = 128;
Worker m_FaceDetectorWorker;
Tensor<float> m_DetectorInput;
Awaitable m_DetectAwaitable;
float m_TextureWidth;
float m_TextureHeight;
public async void Start()
{
m_Anchors = BlazeUtils.LoadAnchors(anchorsCSV.text, k_NumAnchors);
var faceDetectorModel = ModelLoader.Load(faceDetector);
// post process the model to filter scores + nms select the best faces
var graph = new FunctionalGraph();
var input = graph.AddInput(faceDetectorModel, 0);
var outputs = Functional.Forward(faceDetectorModel, 2 * input - 1);
var boxes = outputs[0]; // (1, 896, 16)
var scores = outputs[1]; // (1, 896, 1)
var anchorsData = new float[k_NumAnchors * 4];
Buffer.BlockCopy(m_Anchors, 0, anchorsData, 0, anchorsData.Length * sizeof(float));
var anchors = Functional.Constant(new TensorShape(k_NumAnchors, 4), anchorsData);
var idx_scores_boxes = BlazeUtils.NMSFiltering(boxes, scores, anchors, detectorInputSize, iouThreshold, scoreThreshold);
faceDetectorModel = graph.Compile(idx_scores_boxes.Item1, idx_scores_boxes.Item2, idx_scores_boxes.Item3);
m_FaceDetectorWorker = new Worker(faceDetectorModel, BackendType.GPUCompute);
m_DetectorInput = new Tensor<float>(new TensorShape(1, detectorInputSize, detectorInputSize, 3));
while (true)
{
try
{
m_DetectAwaitable = Detect(imageTexture);
await m_DetectAwaitable;
}
catch (OperationCanceledException)
{
break;
}
}
m_FaceDetectorWorker.Dispose();
m_DetectorInput.Dispose();
}
Vector3 ImageToWorld(Vector2 position)
{
return (position - 0.5f * new Vector2(m_TextureWidth, m_TextureHeight)) / m_TextureHeight;
}
async Awaitable Detect(Texture texture)
{
m_TextureWidth = texture.width;
m_TextureHeight = texture.height;
imagePreview.SetTexture(texture);
var size = Mathf.Max(texture.width, texture.height);
// The affine transformation matrix to go from tensor coordinates to image coordinates
var scale = size / (float)detectorInputSize;
var M = BlazeUtils.mul(BlazeUtils.TranslationMatrix(0.5f * (new Vector2(texture.width, texture.height) + new Vector2(-size, size))), BlazeUtils.ScaleMatrix(new Vector2(scale, -scale)));
BlazeUtils.SampleImageAffine(texture, m_DetectorInput, M);
m_FaceDetectorWorker.Schedule(m_DetectorInput);
var outputIndicesAwaitable = (m_FaceDetectorWorker.PeekOutput(0) as Tensor<int>).ReadbackAndCloneAsync();
var outputScoresAwaitable = (m_FaceDetectorWorker.PeekOutput(1) as Tensor<float>).ReadbackAndCloneAsync();
var outputBoxesAwaitable = (m_FaceDetectorWorker.PeekOutput(2) as Tensor<float>).ReadbackAndCloneAsync();
using var outputIndices = await outputIndicesAwaitable;
using var outputScores = await outputScoresAwaitable;
using var outputBoxes = await outputBoxesAwaitable;
var numFaces = outputIndices.shape.length;
for (var i = 0; i < facePreviews.Length; i++)
{
var active = i < numFaces;
facePreviews[i].SetActive(active);
if (!active)
continue;
var idx = outputIndices[i];
var anchorPosition = detectorInputSize * new float2(m_Anchors[idx, 0], m_Anchors[idx, 1]);
var box_ImageSpace = BlazeUtils.mul(M, anchorPosition + new float2(outputBoxes[0, i, 0], outputBoxes[0, i, 1]));
var boxTopRight_ImageSpace = BlazeUtils.mul(M, anchorPosition + new float2(outputBoxes[0, i, 0] + 0.5f * outputBoxes[0, i, 2], outputBoxes[0, i, 1] + 0.5f * outputBoxes[0, i, 3]));
var boxSize = 2f * (boxTopRight_ImageSpace - box_ImageSpace);
facePreviews[i].SetBoundingBox(true, ImageToWorld(box_ImageSpace), boxSize / texture.height);
for (var j = 0; j < k_NumKeypoints; j++)
{
var position_ImageSpace = BlazeUtils.mul(M, anchorPosition + new float2(outputBoxes[0, i, 4 + 2 * j + 0], outputBoxes[0, i, 4 + 2 * j + 1]));
facePreviews[i].SetKeypoint(j, true, ImageToWorld(position_ImageSpace));
}
}
// if no faces are recognized then the awaitable outputs return synchronously so we need to add an extra frame await here to allow the main thread to run
if (numFaces == 0)
await Awaitable.NextFrameAsync();
}
void OnDestroy()
{
m_DetectAwaitable.Cancel();
}
}