File size: 10,698 Bytes
9d2ff40 939a953 9d2ff40 c1a18ef 9d2ff40 939a953 9d2ff40 939a953 9d2ff40 939a953 9d2ff40 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
---
tags:
- korean
- sentence-transformers
- transformers
- multilingual
- sentence-transformers
- sentence-similarity
- feature-extraction
license: apache-2.0
language:
- af
- ar
- az
- be
- bg
- bn
- ca
- ceb
- cs
- cy
- da
- de
- el
- en
- es
- et
- eu
- fa
- fi
- fr
- gl
- gu
- he
- hi
- hr
- ht
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ky
- lo
- lt
- lv
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- pa
- pl
- pt
- qu
- ro
- ru
- si
- sk
- sl
- so
- sq
- sr
- sv
- sw
- ta
- te
- th
- tl
- tr
- uk
- ur
- vi
- yo
- zh
library_name: sentence-transformers
base_model: Alibaba-NLP/gte-multilingual-base
datasets: []
metrics:
- pearson_cosine
- spearman_cosine
- pearson_manhattan
- spearman_manhattan
- pearson_euclidean
- spearman_euclidean
- pearson_dot
- spearman_dot
- pearson_max
- spearman_max
widget:
- source_sentence: 이집트 군대가 형제애를 단속하다
sentences:
- 이집트의 군대가 무슬림 형제애를 단속하다
- 아르헨티나의 기예르모 코리아와 네덜란드의 마틴 버커크의 또 다른 준결승전도 매력적이다.
- 그것이 사실일 수도 있다고 생각하는 것은 재미있다.
- source_sentence: 오, 그리고 다시 결혼은 근본적인 인권이라고 주장한다.
sentences:
- 특히 결혼은 근본적인 인권이라고 말한 후에.
- 해변에 있는 흑인과 그의 개...
- 이란은 핵 프로그램이 평화적인 목적을 위한 것이라고 주장한다
- source_sentence: 두 남자가 난간에 상자를 올려놓고 있다.
sentences:
- 심장 박동이 빨라졌다.
- 두 남자가 집에 있고, 깊이 잠들어 있다.
- 두 남자가 난간에 상자를 놓고 있다.
- source_sentence: 조지 샤힌은 안데르센 컨설팅 사업부에서 일했다.
sentences:
- 안데르센 컨설팅은 여전히 번창하는 사업이다.
- 공개 전시 중에 총이 경례한다.
- 이것은 내가 영국의 아서 안데르센 사업부의 파트너인 짐 와디아를 아서 안데르센 경영진이 선택한 것보다 래리 웨인바흐를 안데르센 월드와이드의
경영 파트너로 승계하기 위해 안데르센 컨설팅 사업부(현재의 엑센츄어라고 알려져 있음)의 전 관리 파트너인 조지 샤힌에 대한 지지를 표명했을
때 가장 명백했다.
- source_sentence: 아이를 가진 엄마가 해변을 걷는다.
sentences:
- 국립공원에서 가장 큰 마을인 케스윅의 인구는 매년 여름 등산객, 뱃사람, 관광객이 도착함에 따라 증가한다.
- 한 남자가 해변에서 개를 산책시킨다.
- 두 사람이 해변을 걷는다.
pipeline_tag: sentence-similarity
model-index:
- name: upskyy/gte-korean-base
results:
- task:
type: semantic-similarity
name: Semantic Similarity
dataset:
name: sts dev
type: sts-dev
metrics:
- type: pearson_cosine
value: 0.8681402442523579
name: Pearson Cosine
- type: spearman_cosine
value: 0.8689161244129222
name: Spearman Cosine
- type: pearson_manhattan
value: 0.7793706671294577
name: Pearson Manhattan
- type: spearman_manhattan
value: 0.7816816816264681
name: Spearman Manhattan
- type: pearson_euclidean
value: 0.7810210343196274
name: Pearson Euclidean
- type: spearman_euclidean
value: 0.7835693502057339
name: Spearman Euclidean
- type: pearson_dot
value: 0.71802928588865
name: Pearson Dot
- type: spearman_dot
value: 0.7552957785734216
name: Spearman Dot
- type: pearson_max
value: 0.8681402442523579
name: Pearson Max
- type: spearman_max
value: 0.8689161244129222
name: Spearman Max
---
# upskyy/gte-korean-base
This model is korsts and kornli finetuning model from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) <!-- at revision 2098722cb5e9d7f96f46df0496f4d34b7338f79c -->
- **Maximum Sequence Length:** **8192 tokens**
- **Output Dimensionality:** 768 tokens
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Usage (Sentence-Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("upskyy/gte-korean-base", trust_remote_code=True)
# Run inference
sentences = [
'아이를 가진 엄마가 해변을 걷는다.',
'두 사람이 해변을 걷는다.',
'한 남자가 해변에서 개를 산책시킨다.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
print(similarities)
# tensor([[1.0000, 0.6274, 0.3788],
# [0.6274, 1.0000, 0.5978],
# [0.3788, 0.5978, 1.0000]])
```
### Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this:
First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
```python
from transformers import AutoTokenizer, AutoModel
import torch
# Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] # First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ["안녕하세요?", "한국어 문장 임베딩을 위한 버트 모델입니다."]
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained("upskyy/gte-korean-base")
model = AutoModel.from_pretrained("upskyy/gte-korean-base", trust_remote_code=True)
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors="pt")
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input["attention_mask"])
print("Sentence embeddings:")
print(sentence_embeddings)
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Semantic Similarity
* Dataset: `sts-dev`
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
| Metric | Value |
| :----------------- | :--------- |
| pearson_cosine | 0.8681 |
| spearman_cosine | 0.8689 |
| pearson_manhattan | 0.7794 |
| spearman_manhattan | 0.7817 |
| pearson_euclidean | 0.781 |
| spearman_euclidean | 0.7836 |
| pearson_dot | 0.718 |
| spearman_dot | 0.7553 |
| pearson_max | 0.8681 |
| **spearman_max** | **0.8689** |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
### Framework Versions
- Python: 3.10.13
- Sentence Transformers: 3.0.1
- Transformers: 4.42.4
- PyTorch: 2.3.0+cu121
- Accelerate: 0.30.1
- Datasets: 2.16.1
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@misc{zhang2024mgte,
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
author={Xin Zhang and Yanzhao Zhang and Dingkun Long and Wen Xie and Ziqi Dai and Jialong Tang and Huan Lin and Baosong Yang and Pengjun Xie and Fei Huang and Meishan Zhang and Wenjie Li and Min Zhang},
year={2024},
eprint={2407.19669},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2407.19669},
}
```
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |