Update README.md
Browse files
README.md
CHANGED
@@ -9,4 +9,43 @@ language:
|
|
9 |
- it
|
10 |
library_name: gliner
|
11 |
pipeline_tag: token-classification
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
- it
|
10 |
library_name: gliner
|
11 |
pipeline_tag: token-classification
|
12 |
+
datasets:
|
13 |
+
- urchade/synthetic-pii-ner-mistral-v1
|
14 |
+
---
|
15 |
+
|
16 |
+
|
17 |
+
# Model Card for GLiNER-multi
|
18 |
+
|
19 |
+
GLiNER is a Named Entity Recognition (NER) model capable of identifying any entity type using a bidirectional transformer encoder (BERT-like). It provides a practical alternative to traditional NER models, which are limited to predefined entities, and Large Language Models (LLMs) that, despite their flexibility, are costly and large for resource-constrained scenarios.
|
20 |
+
|
21 |
+
This version has been ot recognize and classify **Personally Identifiable Information** (PII) within text. The training dataset has been generated using `mistralai/Mistral-7B-Instruct-v0.2`.
|
22 |
+
|
23 |
+
## Links
|
24 |
+
|
25 |
+
* Paper: https://arxiv.org/abs/2311.08526
|
26 |
+
* Repository: https://github.com/urchade/GLiNER
|
27 |
+
|
28 |
+
```python
|
29 |
+
from gliner import GLiNER
|
30 |
+
|
31 |
+
model = GLiNER.from_pretrained("urchade/gliner_multi_pii-v1")
|
32 |
+
|
33 |
+
text = """
|
34 |
+
Harilala Rasoanaivo, un homme d'affaires local d'Antananarivo, a enregistré une nouvelle société nommée "Rasoanaivo Enterprises" au Lot II M 92 Antohomadinika. Son numéro est le +261 32 22 345 67, et son adresse électronique est [email protected]. Il a fourni son numéro de sécu 501-02-1234 pour l'enregistrement.
|
35 |
+
"""
|
36 |
+
|
37 |
+
labels = ["work", "booking number", "personally identifiable information", "driver licence", "person", "book", "full address", "company", "actor", "character", "email", "passport number", "Social Security Number", "phone number"]
|
38 |
+
entities = model.predict_entities(text, labels)
|
39 |
+
|
40 |
+
for entity in entities:
|
41 |
+
print(entity["text"], "=>", entity["label"])
|
42 |
+
```
|
43 |
+
|
44 |
+
```
|
45 |
+
Harilala Rasoanaivo => person
|
46 |
+
Rasoanaivo Enterprises => company
|
47 |
+
Lot II M 92 Antohomadinika => full address
|
48 |
+
+261 32 22 345 67 => phone number
|
49 |
+
[email protected] => email
|
50 |
+
501-02-1234 => Social Security Number
|
51 |
+
```
|