jacklangerman commited on
Commit
724cc25
·
1 Parent(s): 2808776

add more vis

Browse files
Files changed (3) hide show
  1. hoho/color_mappings.py +24 -0
  2. hoho/hoho.py +60 -0
  3. hoho/vis.py +70 -0
hoho/color_mappings.py CHANGED
@@ -1,3 +1,5 @@
 
 
1
  gestalt_color_mapping = {
2
  "unclassified": (215, 62, 138),
3
  "apex": (235, 88, 48),
@@ -26,6 +28,7 @@ gestalt_color_mapping = {
26
  "other_wall": (112, 61, 240),
27
  "trim": (151, 206, 58),
28
  "unknown": (127, 127, 127),
 
29
  }
30
 
31
  ade20k_color_mapping = {
@@ -180,3 +183,24 @@ ade20k_color_mapping = {
180
  'clock': (102, 255, 0),
181
  'flag': (92, 0, 255),
182
  }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+
3
  gestalt_color_mapping = {
4
  "unclassified": (215, 62, 138),
5
  "apex": (235, 88, 48),
 
28
  "other_wall": (112, 61, 240),
29
  "trim": (151, 206, 58),
30
  "unknown": (127, 127, 127),
31
+ "transition_line": (0,0,0),
32
  }
33
 
34
  ade20k_color_mapping = {
 
183
  'clock': (102, 255, 0),
184
  'flag': (92, 0, 255),
185
  }
186
+
187
+
188
+ # edge_colors = np.asarray([(214, 251, 248),
189
+ # (13, 94, 47),
190
+ # (54, 243, 63),
191
+ # (187, 123, 236),
192
+ # (162, 162, 32),
193
+ # (169, 255, 219),
194
+ # (8, 89, 52),
195
+ # (85, 27, 65),
196
+ # (0, 0, 0)]
197
+
198
+
199
+ # edge_colors = np.array([[ 54, 243, 63],
200
+ # [214, 251, 248],
201
+ # [169, 255, 219],
202
+ # [ 13, 94, 47],
203
+ # [162, 162, 32],
204
+ # [187, 123, 236],
205
+ # [ 85, 27, 65],
206
+ # [ 0, 0, 0]])
hoho/hoho.py CHANGED
@@ -176,6 +176,66 @@ def proc(row, split='train'):
176
  return Sample(out)
177
 
178
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
  class Sample(Dict):
180
  def __repr__(self):
181
  return str({k: v.shape if hasattr(v, 'shape') else [type(v[0])] if isinstance(v, list) else type(v) for k,v in self.items()})
 
176
  return Sample(out)
177
 
178
 
179
+
180
+
181
+
182
+ from . import read_write_colmap
183
+ def decode_colmap(s):
184
+ # with open('colmap_solve/points3D.bin', 'wb') as stream:
185
+
186
+ with temp_working_directory():
187
+
188
+ with open('points3D.bin', 'wb') as stream:
189
+ stream.write(s['points3d'])
190
+
191
+
192
+ with open('cameras.bin', 'wb') as stream:
193
+ stream.write(s['cameras'])
194
+
195
+
196
+ with open('images.bin', 'wb') as stream:
197
+ stream.write(s['images'])
198
+
199
+
200
+ cameras, images, points3D = read_write_colmap.read_model(
201
+ path='.', ext='.bin'
202
+ )
203
+ return cameras, images, points3D
204
+
205
+ from PIL import Image
206
+ import io
207
+ def decode(row):
208
+ cameras, images, points3D = decode_colmap(row)
209
+
210
+ out = {}
211
+
212
+ for k, v in row.items():
213
+ # colname = k.split('.')[0]
214
+ if k in {'ade20k', 'depthcm', 'gestalt'}:
215
+ # print(k, len(v), type(v))
216
+ v = [Image.open(io.BytesIO(im)) for im in v]
217
+ if k in out:
218
+ out[k].extend(v)
219
+ else:
220
+ out[k] = v
221
+ elif k in {'wireframe', 'mesh'}:
222
+ # out.update({a: b.tolist() for a,b in v.items()})
223
+ v = dict(np.load(io.BytesIO(v)))
224
+ out.update({a: b for a,b in v.items()})
225
+ elif k in 'kr':
226
+ out[k.upper()] = v
227
+ elif k == 'cameras':
228
+ out[k] = cameras
229
+ elif k == 'images':
230
+ out[k] = images
231
+ elif k =='points3d':
232
+ out[k] = points3D
233
+ else:
234
+ out[k] = v
235
+
236
+ return Sample(out)
237
+
238
+
239
  class Sample(Dict):
240
  def __repr__(self):
241
  return str({k: v.shape if hasattr(v, 'shape') else [type(v[0])] if isinstance(v, list) else type(v) for k,v in self.items()})
hoho/vis.py CHANGED
@@ -1,6 +1,9 @@
1
  import trimesh
2
  import numpy as np
3
  from copy import deepcopy
 
 
 
4
 
5
  def line(p1, p2, c=(255,0,0), resolution=10, radius=0.05):
6
  '''draws a 3d cylinder along the line (p1, p2)'''
@@ -38,6 +41,19 @@ def line(p1, p2, c=(255,0,0), resolution=10, radius=0.05):
38
 
39
  return mesh
40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
41
 
42
  def show_grid(edges, meshes=None, row_length=5):
43
  '''
@@ -85,3 +101,57 @@ def show_grid(edges, meshes=None, row_length=5):
85
  return trimesh.Scene(out)
86
 
87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import trimesh
2
  import numpy as np
3
  from copy import deepcopy
4
+ from PIL import Image
5
+
6
+ from . import color_mappings
7
 
8
  def line(p1, p2, c=(255,0,0), resolution=10, radius=0.05):
9
  '''draws a 3d cylinder along the line (p1, p2)'''
 
41
 
42
  return mesh
43
 
44
+ def show_wf(row, radius=10):
45
+ EDGE_CLASSES = ['eave',
46
+ 'ridge',
47
+ 'step_flashing',
48
+ 'rake',
49
+ 'flashing',
50
+ 'post',
51
+ 'valley',
52
+ 'hip',
53
+ 'transition_line']
54
+ return [line(a,b, radius=radius, c=color_mappings.gestalt_color_mapping[EDGE_CLASSES[cls_id]]) for (a,b), cls_id in zip(np.stack([*row['wf_vertices']])[np.stack(row['wf_edges'])], row['edge_semantics'])]
55
+ # return [line(a,b, radius=radius, c=color_mappings.edge_colors[cls_id]) for (a,b), cls_id in zip(np.stack([*row['wf_vertices']])[np.stack(row['wf_edges'])], row['edge_semantics'])]
56
+
57
 
58
  def show_grid(edges, meshes=None, row_length=5):
59
  '''
 
101
  return trimesh.Scene(out)
102
 
103
 
104
+
105
+
106
+ def visualize_order_images(row_order):
107
+ return create_image_grid(row_order['ade20k'] + row_order['gestalt'] + [visualize_depth(dm) for dm in row_order['depthcm']], num_per_row=len(row_order['ade20k']))
108
+
109
+ def create_image_grid(images, target_length=312, num_per_row=2):
110
+ # Calculate the target size for the first image
111
+ first_img = images[0]
112
+ aspect_ratio = first_img.width / first_img.height
113
+ new_width = int((target_length ** 2 * aspect_ratio) ** 0.5)
114
+ new_height = int((target_length ** 2 / aspect_ratio) ** 0.5)
115
+
116
+ # Resize the first image
117
+ resized_images = [img.resize((new_width, new_height), Image.Resampling.LANCZOS) for img in images]
118
+
119
+ # Calculate the grid size
120
+ num_rows = (len(resized_images) + num_per_row - 1) // num_per_row
121
+ grid_width = new_width * num_per_row
122
+ grid_height = new_height * num_rows
123
+
124
+ # Create a new image for the grid
125
+ grid_img = Image.new('RGB', (grid_width, grid_height))
126
+
127
+ # Paste the images into the grid
128
+ for i, img in enumerate(resized_images):
129
+ x_offset = (i % num_per_row) * new_width
130
+ y_offset = (i // num_per_row) * new_height
131
+ grid_img.paste(img, (x_offset, y_offset))
132
+
133
+ return grid_img
134
+
135
+
136
+ import matplotlib
137
+ def visualize_depth(depth, min_depth=None, max_depth=None, cmap='rainbow'):
138
+ depth = np.array(depth)
139
+
140
+ if min_depth is None:
141
+ min_depth = np.min(depth)
142
+ if max_depth is None:
143
+ max_depth = np.max(depth)
144
+
145
+
146
+ # Normalize the depth to be between 0 and 1
147
+ depth = (depth - min_depth) / (max_depth - min_depth)
148
+ depth = np.clip(depth, 0, 1)
149
+
150
+ # Use the matplotlib colormap to convert the depth to an RGB image
151
+ cmap = matplotlib.cm.get_cmap(cmap)
152
+ depth_image = (cmap(depth) * 255).astype(np.uint8)
153
+
154
+ # Convert the depth image to a PIL image
155
+ depth_image = Image.fromarray(depth_image)
156
+
157
+ return depth_image