File size: 1,500 Bytes
0207b5a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
# Model Card for BERT-base Sentiment Analysis Model
## Model Details
This model is a fine-tuned version of BERT-base for sentiment analysis tasks.
## Training Data
The model was trained on the Rotten Tomatoes dataset.
## Training Procedure
- **Learning Rate**: 2e-5
- **Epochs**: 3
- **Batch Size**: 16
๊ฐ๋ฅํ๋ฉด ๋ค๋ฅธ ์ฌ๋๋ค๋ ๋๊ฐ์ ๋ฒํธ๋ชจ๋ธ, ๋กํผ ํ ๋ฉํ ๋ฅผ ์ด์ฉํ์ ๋ ์ฌํ๊ฐ๋ฅํ๋๋ก ํ๋ ๋ชจ๋ ํ์ดํผ ํ๋ผ๋ฏธํฐ๋ค์ ๋ค ์ ์ด๋ผ
## How to Use ํ๊น
ํ์ด์ค ์ธ ๋ ์ด๋ค ๊ฒ์ ์ฐ๋ฉด ๋๋ค๋ ๊ฑธ ์๋ ค์ฃผ๋ ๊ฒ
```python
from transformers import AutoTokenizer, AutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
input_text = "The movie was fantastic with a gripping storyline!"
inputs = tokenizer.encode(input_text, return_tensors="pt")
outputs = model(inputs)
print(outputs.logits)
```
## Evaluation ํ๊ฐ ๊ฒฐ๊ณผ
- **Accuracy**: 81.97%
## Limitations ์ฝ์ ์ ๋ญ๊ฐ ์๋ค๋ ๊ฒ
The model may generate biased or inappropriate content
due to the nature of the training data.
It is recommended to use the model with caution and apply necessary filters.
## Ethical Considerations
- **Bias**: The model may inherit biases present in the training data.
- **Misuse**: The model can be misused to generate misleading or harmful content.
## Copyright and License
This model is licensed under the MIT License.
|