uvegesistvan commited on
Commit
4de9108
·
verified ·
1 Parent(s): 9ffca50

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +73 -196
README.md CHANGED
@@ -1,199 +1,76 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
-
11
-
12
- ## Model Details
13
-
14
- ### Model Description
15
-
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
-
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
-
36
- ## Uses
37
-
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
- ### Direct Use
41
-
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ language: cs
3
+ license: mit
4
+ tags:
5
+ - emotion-classification
6
+ - text-analysis
7
+ - machine-translation
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1-score
12
+ - accuracy
13
  ---
14
 
15
+ # Model Card for uvegesistvan/wildmann_german_proposal_2b_german_to_czech
16
+
17
+ ## Model Overview
18
+ This model is a multi-class emotion classifier trained on German-to-Czech machine-translated text data. It identifies nine distinct emotional states in text and demonstrates how machine-translated datasets can support emotion classification tasks across different languages.
19
+
20
+ ### Emotion Classes
21
+ The model classifies the following emotional states:
22
+
23
+ - **Anger (0)**
24
+ - **Fear (1)**
25
+ - **Disgust (2)**
26
+ - **Sadness (3)**
27
+ - **Joy (4)**
28
+ - **Enthusiasm (5)**
29
+ - **Hope (6)**
30
+ - **Pride (7)**
31
+ - **No emotion (8)**
32
+
33
+ ### Dataset and Preprocessing
34
+ The dataset includes German text machine-translated into Czech and annotated for emotional content. Both synthetic and original German sentences were translated to create a diverse corpus. Preprocessing steps included:
35
+
36
+ - Balancing classes through undersampling of overrepresented labels, such as "No emotion" and "Anger."
37
+ - Normalization of text to handle inconsistencies from the machine translation process.
38
+
39
+ ### Evaluation Metrics
40
+ The model's performance was evaluated using standard classification metrics. Results are summarized below:
41
+
42
+ | Class | Precision | Recall | F1-Score | Support |
43
+ |---------------|-----------|--------|----------|---------|
44
+ | Anger (0) | 0.50 | 0.63 | 0.56 | 777 |
45
+ | Fear (1) | 0.84 | 0.74 | 0.79 | 776 |
46
+ | Disgust (2) | 0.91 | 0.94 | 0.93 | 776 |
47
+ | Sadness (3) | 0.87 | 0.83 | 0.85 | 775 |
48
+ | Joy (4) | 0.83 | 0.81 | 0.82 | 777 |
49
+ | Enthusiasm (5)| 0.61 | 0.61 | 0.61 | 776 |
50
+ | Hope (6) | 0.54 | 0.46 | 0.50 | 777 |
51
+ | Pride (7) | 0.75 | 0.81 | 0.78 | 776 |
52
+ | No emotion (8)| 0.66 | 0.64 | 0.65 | 1553 |
53
+
54
+ ### Overall Metrics
55
+ - **Accuracy**: 0.71
56
+ - **Macro Average**: Precision = 0.72, Recall = 0.72, F1-Score = 0.72
57
+ - **Weighted Average**: Precision = 0.72, Recall = 0.71, F1-Score = 0.71
58
+
59
+ ### Performance Insights
60
+ The model performs well across most classes, particularly in "Disgust" and "Fear." However, classes such as "Hope" exhibit lower F1-scores, potentially due to translation noise or subtle emotional cues being lost in machine translation.
61
+
62
+ ## Model Usage
63
+ ### Applications
64
+ - Emotion analysis of German texts translated into Czech.
65
+ - Sentiment tracking in Czech-language customer feedback derived from German text.
66
+ - Research on cross-linguistic emotion classification in multilingual datasets.
67
+
68
+ ### Limitations
69
+ - The model's performance is influenced by the quality of the machine-translated text, which may introduce biases or inaccuracies.
70
+ - Subtle emotional states like "Hope" may be harder to classify due to translation inconsistencies.
71
+
72
+ ### Ethical Considerations
73
+ The reliance on machine-translated datasets means that cultural and linguistic nuances may be lost, potentially impacting classification accuracy. Users should carefully evaluate the model before applying it in sensitive areas, such as mental health or customer sentiment analysis.
74
+
75
+ ### Citation
76
+ For further information, visit: [uvegesistvan/wildmann_german_proposal_2b_german_to_czech](#)