전원표
commited on
Commit
·
7b516e0
1
Parent(s):
9ab228f
model commit
Browse files- F1_curve.png +0 -0
- PR_curve.png +0 -0
- P_curve.png +0 -0
- R_curve.png +0 -0
- args.yaml +108 -0
- confusion_matrix.png +0 -0
- confusion_matrix_normalized.png +0 -0
- labels.jpg +0 -0
- labels_correlogram.jpg +0 -0
- results.csv +51 -0
- results.png +0 -0
- train_batch0.jpg +0 -0
- train_batch1.jpg +0 -0
- train_batch2.jpg +0 -0
- train_batch21640.jpg +0 -0
- train_batch21641.jpg +0 -0
- train_batch21642.jpg +0 -0
- val_batch0_labels.jpg +0 -0
- val_batch0_pred.jpg +0 -0
- val_batch1_labels.jpg +0 -0
- val_batch1_pred.jpg +0 -0
- val_batch2_labels.jpg +0 -0
- val_batch2_pred.jpg +0 -0
- weights/best.pt +3 -0
F1_curve.png
ADDED
![]() |
PR_curve.png
ADDED
![]() |
P_curve.png
ADDED
![]() |
R_curve.png
ADDED
![]() |
args.yaml
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
task: detect
|
2 |
+
mode: train
|
3 |
+
model: ./model/yolov8n.pt
|
4 |
+
data: ./doclaynet.yaml
|
5 |
+
epochs: 50
|
6 |
+
time: null
|
7 |
+
patience: 100
|
8 |
+
batch: 128
|
9 |
+
imgsz: 640
|
10 |
+
save: true
|
11 |
+
save_period: -1
|
12 |
+
cache: false
|
13 |
+
device:
|
14 |
+
- 0
|
15 |
+
- 1
|
16 |
+
workers: 2
|
17 |
+
project: null
|
18 |
+
name: train10
|
19 |
+
exist_ok: false
|
20 |
+
pretrained: true
|
21 |
+
optimizer: auto
|
22 |
+
verbose: true
|
23 |
+
seed: 0
|
24 |
+
deterministic: true
|
25 |
+
single_cls: false
|
26 |
+
rect: false
|
27 |
+
cos_lr: false
|
28 |
+
close_mosaic: 10
|
29 |
+
resume: false
|
30 |
+
amp: true
|
31 |
+
fraction: 1.0
|
32 |
+
profile: false
|
33 |
+
freeze: null
|
34 |
+
multi_scale: false
|
35 |
+
overlap_mask: true
|
36 |
+
mask_ratio: 4
|
37 |
+
dropout: 0.0
|
38 |
+
val: true
|
39 |
+
split: val
|
40 |
+
save_json: false
|
41 |
+
save_hybrid: false
|
42 |
+
conf: null
|
43 |
+
iou: 0.7
|
44 |
+
max_det: 300
|
45 |
+
half: false
|
46 |
+
dnn: false
|
47 |
+
plots: true
|
48 |
+
source: null
|
49 |
+
vid_stride: 1
|
50 |
+
stream_buffer: false
|
51 |
+
visualize: false
|
52 |
+
augment: false
|
53 |
+
agnostic_nms: false
|
54 |
+
classes: null
|
55 |
+
retina_masks: false
|
56 |
+
embed: null
|
57 |
+
show: false
|
58 |
+
save_frames: false
|
59 |
+
save_txt: false
|
60 |
+
save_conf: false
|
61 |
+
save_crop: false
|
62 |
+
show_labels: true
|
63 |
+
show_conf: true
|
64 |
+
show_boxes: true
|
65 |
+
line_width: null
|
66 |
+
format: torchscript
|
67 |
+
keras: false
|
68 |
+
optimize: false
|
69 |
+
int8: false
|
70 |
+
dynamic: false
|
71 |
+
simplify: false
|
72 |
+
opset: null
|
73 |
+
workspace: 4
|
74 |
+
nms: false
|
75 |
+
lr0: 0.01
|
76 |
+
lrf: 0.01
|
77 |
+
momentum: 0.937
|
78 |
+
weight_decay: 0.0005
|
79 |
+
warmup_epochs: 3.0
|
80 |
+
warmup_momentum: 0.8
|
81 |
+
warmup_bias_lr: 0.1
|
82 |
+
box: 7.5
|
83 |
+
cls: 0.5
|
84 |
+
dfl: 1.5
|
85 |
+
pose: 12.0
|
86 |
+
kobj: 1.0
|
87 |
+
label_smoothing: 0.0
|
88 |
+
nbs: 64
|
89 |
+
hsv_h: 0.015
|
90 |
+
hsv_s: 0.7
|
91 |
+
hsv_v: 0.4
|
92 |
+
degrees: 0.0
|
93 |
+
translate: 0.1
|
94 |
+
scale: 0.5
|
95 |
+
shear: 0.0
|
96 |
+
perspective: 0.0
|
97 |
+
flipud: 0.0
|
98 |
+
fliplr: 0.5
|
99 |
+
bgr: 0.0
|
100 |
+
mosaic: 1.0
|
101 |
+
mixup: 0.0
|
102 |
+
copy_paste: 0.0
|
103 |
+
auto_augment: randaugment
|
104 |
+
erasing: 0.4
|
105 |
+
crop_fraction: 1.0
|
106 |
+
cfg: null
|
107 |
+
tracker: botsort.yaml
|
108 |
+
save_dir: runs/detect/train10
|
confusion_matrix.png
ADDED
![]() |
confusion_matrix_normalized.png
ADDED
![]() |
labels.jpg
ADDED
![]() |
labels_correlogram.jpg
ADDED
![]() |
results.csv
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch, train/box_loss, train/cls_loss, train/dfl_loss, metrics/precision(B), metrics/recall(B), metrics/mAP50(B), metrics/mAP50-95(B), val/box_loss, val/cls_loss, val/dfl_loss, lr/pg0, lr/pg1, lr/pg2
|
2 |
+
1, 1.483, 2.2701, 1.2925, 0.56516, 0.34005, 0.30014, 0.18733, 1.3558, 1.6627, 1.1334, 0.0033272, 0.0033272, 0.0033272
|
3 |
+
2, 1.1529, 1.4433, 1.0658, 0.66109, 0.4472, 0.43733, 0.27855, 1.2296, 1.3608, 1.0589, 0.0065286, 0.0065286, 0.0065286
|
4 |
+
3, 1.0471, 1.2508, 1.0112, 0.48298, 0.41587, 0.41077, 0.23928, 1.3097, 1.4539, 1.0248, 0.0095981, 0.0095981, 0.0095981
|
5 |
+
4, 0.93596, 1.0893, 0.97555, 0.62996, 0.51039, 0.50624, 0.31374, 1.1873, 1.2342, 0.97382, 0.009406, 0.009406, 0.009406
|
6 |
+
5, 0.84789, 0.96796, 0.95318, 0.63569, 0.57479, 0.5871, 0.38927, 1.0503, 1.0473, 0.93336, 0.009208, 0.009208, 0.009208
|
7 |
+
6, 0.79689, 0.90037, 0.94148, 0.64779, 0.55927, 0.5856, 0.41355, 0.93014, 0.94925, 0.92989, 0.00901, 0.00901, 0.00901
|
8 |
+
7, 0.76595, 0.86462, 0.93538, 0.57191, 0.4991, 0.51802, 0.34505, 1.1078, 1.1607, 0.97045, 0.008812, 0.008812, 0.008812
|
9 |
+
8, 0.73832, 0.83086, 0.92866, 0.63032, 0.56722, 0.57993, 0.41795, 0.89129, 0.94212, 0.90876, 0.008614, 0.008614, 0.008614
|
10 |
+
9, 0.71771, 0.80686, 0.92444, 0.69417, 0.63691, 0.65233, 0.45829, 0.97338, 0.90419, 0.91354, 0.008416, 0.008416, 0.008416
|
11 |
+
10, 0.69945, 0.79207, 0.92035, 0.70663, 0.6354, 0.6535, 0.46606, 0.94147, 0.88182, 0.9055, 0.008218, 0.008218, 0.008218
|
12 |
+
11, 0.68906, 0.7779, 0.91928, 0.7144, 0.62651, 0.65311, 0.47162, 0.91772, 0.84109, 0.90079, 0.00802, 0.00802, 0.00802
|
13 |
+
12, 0.67671, 0.76459, 0.9154, 0.73492, 0.64679, 0.67784, 0.48652, 0.93361, 0.82215, 0.89809, 0.007822, 0.007822, 0.007822
|
14 |
+
13, 0.6695, 0.75645, 0.91421, 0.74046, 0.67265, 0.68807, 0.50801, 0.87572, 0.78447, 0.89185, 0.007624, 0.007624, 0.007624
|
15 |
+
14, 0.65772, 0.74686, 0.91276, 0.70831, 0.66406, 0.6756, 0.49598, 0.89099, 0.809, 0.89361, 0.007426, 0.007426, 0.007426
|
16 |
+
15, 0.64838, 0.73921, 0.91048, 0.73901, 0.67272, 0.69414, 0.50384, 0.91268, 0.78883, 0.89314, 0.007228, 0.007228, 0.007228
|
17 |
+
16, 0.64318, 0.73332, 0.90944, 0.73722, 0.66283, 0.68438, 0.50449, 0.88498, 0.78891, 0.89024, 0.00703, 0.00703, 0.00703
|
18 |
+
17, 0.63517, 0.71968, 0.90762, 0.73674, 0.66026, 0.6846, 0.50563, 0.86233, 0.76849, 0.88728, 0.006832, 0.006832, 0.006832
|
19 |
+
18, 0.62645, 0.71206, 0.90625, 0.73068, 0.67481, 0.6912, 0.50687, 0.89239, 0.77089, 0.88878, 0.006634, 0.006634, 0.006634
|
20 |
+
19, 0.62225, 0.70597, 0.90488, 0.74263, 0.67654, 0.6955, 0.51037, 0.89019, 0.76911, 0.89037, 0.006436, 0.006436, 0.006436
|
21 |
+
20, 0.61923, 0.70433, 0.90338, 0.73945, 0.67925, 0.69435, 0.51349, 0.88558, 0.77009, 0.88795, 0.006238, 0.006238, 0.006238
|
22 |
+
21, 0.6127, 0.69905, 0.90324, 0.74363, 0.68653, 0.69837, 0.51584, 0.883, 0.76373, 0.88796, 0.00604, 0.00604, 0.00604
|
23 |
+
22, 0.60804, 0.69447, 0.90127, 0.738, 0.69062, 0.70069, 0.51986, 0.87369, 0.7532, 0.88617, 0.005842, 0.005842, 0.005842
|
24 |
+
23, 0.60248, 0.6903, 0.90117, 0.74448, 0.68515, 0.69952, 0.51987, 0.87129, 0.75178, 0.88652, 0.005644, 0.005644, 0.005644
|
25 |
+
24, 0.59894, 0.68679, 0.90008, 0.7407, 0.69175, 0.70089, 0.52119, 0.87184, 0.75078, 0.88612, 0.005446, 0.005446, 0.005446
|
26 |
+
25, 0.59195, 0.6832, 0.90016, 0.7392, 0.69505, 0.70268, 0.52213, 0.87137, 0.74718, 0.88534, 0.005248, 0.005248, 0.005248
|
27 |
+
26, 0.58794, 0.67378, 0.89764, 0.74341, 0.69777, 0.70374, 0.52272, 0.86765, 0.74486, 0.88419, 0.00505, 0.00505, 0.00505
|
28 |
+
27, 0.58058, 0.669, 0.89661, 0.74115, 0.69983, 0.70483, 0.52517, 0.86479, 0.7424, 0.88359, 0.004852, 0.004852, 0.004852
|
29 |
+
28, 0.58037, 0.66923, 0.8968, 0.74459, 0.69919, 0.70514, 0.5269, 0.85679, 0.73945, 0.88255, 0.004654, 0.004654, 0.004654
|
30 |
+
29, 0.5699, 0.65951, 0.89447, 0.74297, 0.69858, 0.7053, 0.52726, 0.85509, 0.73707, 0.88213, 0.004456, 0.004456, 0.004456
|
31 |
+
30, 0.56856, 0.6609, 0.89444, 0.74558, 0.69784, 0.70539, 0.52774, 0.85336, 0.73423, 0.88135, 0.004258, 0.004258, 0.004258
|
32 |
+
31, 0.56373, 0.65491, 0.89333, 0.74675, 0.6994, 0.7061, 0.52752, 0.85582, 0.73318, 0.88132, 0.00406, 0.00406, 0.00406
|
33 |
+
32, 0.55739, 0.64846, 0.89159, 0.74465, 0.70046, 0.7066, 0.52743, 0.85626, 0.73147, 0.88089, 0.003862, 0.003862, 0.003862
|
34 |
+
33, 0.55434, 0.64246, 0.89068, 0.74554, 0.69848, 0.7068, 0.52802, 0.85465, 0.73019, 0.88046, 0.003664, 0.003664, 0.003664
|
35 |
+
34, 0.55257, 0.6423, 0.89011, 0.74671, 0.69966, 0.70714, 0.52878, 0.85496, 0.72917, 0.88024, 0.003466, 0.003466, 0.003466
|
36 |
+
35, 0.54855, 0.64, 0.89089, 0.74688, 0.69971, 0.70764, 0.52892, 0.85486, 0.72808, 0.88, 0.003268, 0.003268, 0.003268
|
37 |
+
36, 0.54273, 0.63532, 0.89023, 0.74882, 0.70045, 0.70824, 0.52967, 0.85486, 0.72762, 0.87995, 0.00307, 0.00307, 0.00307
|
38 |
+
37, 0.5404, 0.63057, 0.88832, 0.74901, 0.70327, 0.70884, 0.53018, 0.85435, 0.72628, 0.87945, 0.002872, 0.002872, 0.002872
|
39 |
+
38, 0.53537, 0.62986, 0.88727, 0.74921, 0.70367, 0.7094, 0.53072, 0.8544, 0.72512, 0.8792, 0.002674, 0.002674, 0.002674
|
40 |
+
39, 0.53037, 0.62478, 0.88738, 0.75215, 0.70152, 0.70988, 0.53145, 0.8531, 0.72362, 0.87875, 0.002476, 0.002476, 0.002476
|
41 |
+
40, 0.52702, 0.62092, 0.88644, 0.75409, 0.70166, 0.71023, 0.5322, 0.85273, 0.72239, 0.87845, 0.002278, 0.002278, 0.002278
|
42 |
+
41, 0.54289, 0.5836, 0.85975, 0.75162, 0.70718, 0.71083, 0.53259, 0.85194, 0.72014, 0.87801, 0.00208, 0.00208, 0.00208
|
43 |
+
42, 0.53222, 0.57036, 0.85669, 0.75109, 0.70796, 0.71152, 0.53364, 0.85019, 0.71774, 0.87752, 0.001882, 0.001882, 0.001882
|
44 |
+
43, 0.52475, 0.56334, 0.85515, 0.75295, 0.70835, 0.71233, 0.53476, 0.84982, 0.71554, 0.8771, 0.001684, 0.001684, 0.001684
|
45 |
+
44, 0.5159, 0.55631, 0.85303, 0.75584, 0.70873, 0.71302, 0.53549, 0.84999, 0.71385, 0.87674, 0.001486, 0.001486, 0.001486
|
46 |
+
45, 0.51181, 0.54565, 0.85192, 0.75556, 0.70892, 0.71402, 0.53619, 0.84961, 0.71199, 0.87626, 0.001288, 0.001288, 0.001288
|
47 |
+
46, 0.50433, 0.54366, 0.85179, 0.75658, 0.70938, 0.71504, 0.53698, 0.84973, 0.71064, 0.87589, 0.00109, 0.00109, 0.00109
|
48 |
+
47, 0.49892, 0.53682, 0.85103, 0.75615, 0.71036, 0.71581, 0.5374, 0.84936, 0.70939, 0.87548, 0.000892, 0.000892, 0.000892
|
49 |
+
48, 0.49287, 0.53122, 0.84835, 0.75681, 0.71052, 0.71664, 0.53801, 0.84932, 0.70832, 0.87519, 0.000694, 0.000694, 0.000694
|
50 |
+
49, 0.48793, 0.52509, 0.84831, 0.75751, 0.71004, 0.71717, 0.53889, 0.84847, 0.7069, 0.8748, 0.000496, 0.000496, 0.000496
|
51 |
+
50, 0.48096, 0.51687, 0.84705, 0.7559, 0.711, 0.71754, 0.53947, 0.84741, 0.70598, 0.87447, 0.000298, 0.000298, 0.000298
|
results.png
ADDED
![]() |
train_batch0.jpg
ADDED
![]() |
train_batch1.jpg
ADDED
![]() |
train_batch2.jpg
ADDED
![]() |
train_batch21640.jpg
ADDED
![]() |
train_batch21641.jpg
ADDED
![]() |
train_batch21642.jpg
ADDED
![]() |
val_batch0_labels.jpg
ADDED
![]() |
val_batch0_pred.jpg
ADDED
![]() |
val_batch1_labels.jpg
ADDED
![]() |
val_batch1_pred.jpg
ADDED
![]() |
val_batch2_labels.jpg
ADDED
![]() |
val_batch2_pred.jpg
ADDED
![]() |
weights/best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1dd302218b154d57bb4971bb9c5908d64484af51703a90bd427377841a481811
|
3 |
+
size 6258543
|