dflevine13
commited on
added benchmarks
Browse files
README.md
CHANGED
@@ -1,5 +1,13 @@
|
|
1 |
---
|
2 |
license: cc-by-nc-nd-4.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
---
|
4 |
# Overview
|
5 |
|
@@ -22,6 +30,22 @@ GitHub: <https://github.com/EleutherAI/pythia>
|
|
22 |
Paper: <https://arxiv.org/abs/2304.01373>
|
23 |
Hugging Face: <https://huggingface.co/EleutherAI/pythia-160m>
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
# Sample Code
|
26 |
|
27 |
We provide an example of how to use the model to conditionally generate a cell equipped with a post-processing function to remove duplicate and invalid genes.
|
@@ -122,4 +146,4 @@ with torch.no_grad():
|
|
122 |
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
123 |
cell_sentence = "".join(re.split(r"\?|\.|:", output_text)[1:]).strip()
|
124 |
processed_genes = post_process_generated_cell_sentences(cell_sentence, gene_dictionary)
|
125 |
-
```
|
|
|
1 |
---
|
2 |
license: cc-by-nc-nd-4.0
|
3 |
+
datasets:
|
4 |
+
- vandijklab/immune-c2s
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
tags:
|
8 |
+
- pytorch
|
9 |
+
- causal-lm
|
10 |
+
- scRNA-seq
|
11 |
---
|
12 |
# Overview
|
13 |
|
|
|
30 |
Paper: <https://arxiv.org/abs/2304.01373>
|
31 |
Hugging Face: <https://huggingface.co/EleutherAI/pythia-160m>
|
32 |
|
33 |
+
# Evaluation
|
34 |
+
|
35 |
+
This model was evaluated on KNN classification and Gromov-Wasserstein (GW) distance.
|
36 |
+
The label for a generated cell is the corresponding cell type used in its corresponding prompt for generation.
|
37 |
+
Ground truth cells were sampled with replacement from a held out test dataset.
|
38 |
+
The generated cells are converted to expression vectors using the method described in the paper.
|
39 |
+
For complete details on the experiments, we refer to the paper.
|
40 |
+
|
41 |
+
| Model | k=3 NN (↑) | k=5 NN (↑) | k=10 NN (↑) | k=25 NN (↑) | GW (↓) |
|
42 |
+
| :---- | :---: | :---: | :---: | :---: | :----: |
|
43 |
+
| scGEN | 0.2376 | 0.2330 | 0.2377 | 0.2335 | 315.9505 |
|
44 |
+
| scVI | 0.2436 | 0.2400 | 0.2425 | 0.2348 | 302.1285 |
|
45 |
+
| scDiffusion | 0.2335 | 0.2288 | 0.2368 | 0.2306 | 72.0208 |
|
46 |
+
| scGPT | 0.1838 | 0.1788 | 0.1811 | 0.1882 | 2989.8066 |
|
47 |
+
| **C2S (Pythia-160m)** | **0.2588** | **0.2565** | **0.2746** | **0.2715** | **54.3040** |
|
48 |
+
|
49 |
# Sample Code
|
50 |
|
51 |
We provide an example of how to use the model to conditionally generate a cell equipped with a post-processing function to remove duplicate and invalid genes.
|
|
|
146 |
output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
147 |
cell_sentence = "".join(re.split(r"\?|\.|:", output_text)[1:]).strip()
|
148 |
processed_genes = post_process_generated_cell_sentences(cell_sentence, gene_dictionary)
|
149 |
+
```
|