dflevine13 commited on
Commit
bfb8e56
·
verified ·
1 Parent(s): c2ab9c5

added benchmarks

Browse files
Files changed (1) hide show
  1. README.md +25 -1
README.md CHANGED
@@ -1,5 +1,13 @@
1
  ---
2
  license: cc-by-nc-nd-4.0
 
 
 
 
 
 
 
 
3
  ---
4
  # Overview
5
 
@@ -22,6 +30,22 @@ GitHub: <https://github.com/EleutherAI/pythia>
22
  Paper: <https://arxiv.org/abs/2304.01373>
23
  Hugging Face: <https://huggingface.co/EleutherAI/pythia-160m>
24
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  # Sample Code
26
 
27
  We provide an example of how to use the model to conditionally generate a cell equipped with a post-processing function to remove duplicate and invalid genes.
@@ -122,4 +146,4 @@ with torch.no_grad():
122
  output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
123
  cell_sentence = "".join(re.split(r"\?|\.|:", output_text)[1:]).strip()
124
  processed_genes = post_process_generated_cell_sentences(cell_sentence, gene_dictionary)
125
- ```
 
1
  ---
2
  license: cc-by-nc-nd-4.0
3
+ datasets:
4
+ - vandijklab/immune-c2s
5
+ language:
6
+ - en
7
+ tags:
8
+ - pytorch
9
+ - causal-lm
10
+ - scRNA-seq
11
  ---
12
  # Overview
13
 
 
30
  Paper: <https://arxiv.org/abs/2304.01373>
31
  Hugging Face: <https://huggingface.co/EleutherAI/pythia-160m>
32
 
33
+ # Evaluation
34
+
35
+ This model was evaluated on KNN classification and Gromov-Wasserstein (GW) distance.
36
+ The label for a generated cell is the corresponding cell type used in its corresponding prompt for generation.
37
+ Ground truth cells were sampled with replacement from a held out test dataset.
38
+ The generated cells are converted to expression vectors using the method described in the paper.
39
+ For complete details on the experiments, we refer to the paper.
40
+
41
+ | Model | k=3 NN (&#8593;) | k=5 NN (&#8593;) | k=10 NN (&#8593;) | k=25 NN (&#8593;) | GW (&#8595;) |
42
+ | :---- | :---: | :---: | :---: | :---: | :----: |
43
+ | scGEN | 0.2376 | 0.2330 | 0.2377 | 0.2335 | 315.9505 |
44
+ | scVI | 0.2436 | 0.2400 | 0.2425 | 0.2348 | 302.1285 |
45
+ | scDiffusion | 0.2335 | 0.2288 | 0.2368 | 0.2306 | 72.0208 |
46
+ | scGPT | 0.1838 | 0.1788 | 0.1811 | 0.1882 | 2989.8066 |
47
+ | **C2S (Pythia-160m)** | **0.2588** | **0.2565** | **0.2746** | **0.2715** | **54.3040** |
48
+
49
  # Sample Code
50
 
51
  We provide an example of how to use the model to conditionally generate a cell equipped with a post-processing function to remove duplicate and invalid genes.
 
146
  output_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
147
  cell_sentence = "".join(re.split(r"\?|\.|:", output_text)[1:]).strip()
148
  processed_genes = post_process_generated_cell_sentences(cell_sentence, gene_dictionary)
149
+ ```