File size: 1,742 Bytes
cfa073e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: apache-2.0
base_model: facebook/bart-base
tags:
- generated_from_trainer
datasets:
- stanfordnlp/snli
metrics:
- accuracy
model-index:
- name: bart-base-snli-model2
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: snli
type: stanfordnlp/snli
metrics:
- name: Accuracy
type: accuracy
value: 0.9131274131274131
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bart-base-snli-model2
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the snli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2615
- Accuracy: 0.9131
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 75
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.3449 | 1.0 | 8584 | 0.2785 | 0.9046 |
| 0.2964 | 2.0 | 17168 | 0.2619 | 0.9096 |
| 0.2557 | 3.0 | 25752 | 0.2615 | 0.9131 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1+cu118
- Datasets 2.15.0
- Tokenizers 0.15.0
|