File size: 1,766 Bytes
30a5b33
32de796
 
30a5b33
32de796
30a5b33
32de796
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30a5b33
 
32de796
 
30a5b33
32de796
30a5b33
32de796
 
 
 
30a5b33
32de796
30a5b33
32de796
30a5b33
32de796
30a5b33
32de796
30a5b33
32de796
30a5b33
32de796
30a5b33
32de796
30a5b33
32de796
30a5b33
32de796
 
 
 
 
 
 
 
30a5b33
32de796
30a5b33
32de796
 
 
 
 
30a5b33
32de796
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
license: mit
base_model: openai-community/gpt2
tags:
- generated_from_trainer
datasets:
- stanfordnlp/snli
metrics:
- accuracy
model-index:
- name: gpt2-bn-adapter-895K-snli-model1
  results:
  - task:
      name: Text Classification
      type: text-classification
    dataset:
      name: snli
      type: stanfordnlp/snli
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.8274740906319854
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# gpt2-bn-adapter-895K-snli-model1

This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on the snli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4353
- Accuracy: 0.8275

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step  | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.5633        | 1.0   | 8584  | 0.4692          | 0.8149   |
| 0.5225        | 2.0   | 17168 | 0.4438          | 0.8248   |
| 0.5205        | 3.0   | 25752 | 0.4353          | 0.8275   |


### Framework versions

- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0