File size: 1,766 Bytes
30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 30a5b33 32de796 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 |
---
license: mit
base_model: openai-community/gpt2
tags:
- generated_from_trainer
datasets:
- stanfordnlp/snli
metrics:
- accuracy
model-index:
- name: gpt2-bn-adapter-895K-snli-model1
results:
- task:
name: Text Classification
type: text-classification
dataset:
name: snli
type: stanfordnlp/snli
metrics:
- name: Accuracy
type: accuracy
value: 0.8274740906319854
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# gpt2-bn-adapter-895K-snli-model1
This model is a fine-tuned version of [openai-community/gpt2](https://huggingface.co/openai-community/gpt2) on the snli dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4353
- Accuracy: 0.8275
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 10
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
| 0.5633 | 1.0 | 8584 | 0.4692 | 0.8149 |
| 0.5225 | 2.0 | 17168 | 0.4438 | 0.8248 |
| 0.5205 | 3.0 | 25752 | 0.4353 | 0.8275 |
### Framework versions
- Transformers 4.35.2
- Pytorch 2.1.1+cu121
- Datasets 2.15.0
- Tokenizers 0.15.0
|