File size: 4,359 Bytes
525e868 116b4ab 525e868 6946ca6 525e868 0e900db 525e868 fb4a24a 525e868 fb4a24a 525e868 fb4a24a 525e868 fb4a24a 525e868 fb4a24a 525e868 fb4a24a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 |
---
language:
- hi
license: apache-2.0
tags:
- whisper-event
metrics:
- wer
base_model: openai/whisper-small
model-index:
- name: Whisper Hindi Small - Vasista Sai Lodagala
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: google/fleurs
type: google/fleurs
config: hi_in
split: test
metrics:
- type: wer
value: 9.02
name: WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: mozilla-foundation/common_voice_11_0
type: mozilla-foundation/common_voice_11_0
config: hi
split: test
metrics:
- type: wer
value: 14.12
name: WER
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# Whisper Hindi Small
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Hindi data available from multiple publicly available ASR corpuses.
It has been fine-tuned as a part of the Whisper fine-tuning sprint.
**NOTE:** The code used to train this model is available for re-use in the [whisper-finetune](https://github.com/vasistalodagala/whisper-finetune) repository.
## Usage
In order to evaluate this model on an entire dataset, the evaluation codes available in the [whisper-finetune](https://github.com/vasistalodagala/whisper-finetune) repository can be used.
The same repository also provides the scripts for faster inference using whisper-jax.
In order to infer a single audio file using this model, the following code snippet can be used:
```python
>>> import torch
>>> from transformers import pipeline
>>> # path to the audio file to be transcribed
>>> audio = "/path/to/audio.format"
>>> device = "cuda:0" if torch.cuda.is_available() else "cpu"
>>> transcribe = pipeline(task="automatic-speech-recognition", model="vasista22/whisper-hindi-small", chunk_length_s=30, device=device)
>>> transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="hi", task="transcribe")
>>> print('Transcription: ', transcribe(audio)["text"])
```
For faster inference of whisper models, the [whisper-jax](https://github.com/sanchit-gandhi/whisper-jax) library can be used. Please follow the necessary installation steps as mentioned [here](https://github.com/vasistalodagala/whisper-finetune#faster-evaluation-with-whisper-jax), before using the following code snippet:
```python
>>> import jax.numpy as jnp
>>> from whisper_jax import FlaxWhisperForConditionalGeneration, FlaxWhisperPipline
>>> # path to the audio file to be transcribed
>>> audio = "/path/to/audio.format"
>>> transcribe = FlaxWhisperPipline("vasista22/whisper-hindi-small", batch_size=16)
>>> transcribe.model.config.forced_decoder_ids = transcribe.tokenizer.get_decoder_prompt_ids(language="hi", task="transcribe")
>>> print('Transcription: ', transcribe(audio)["text"])
```
## Training and evaluation data
Training Data:
- [GramVaani ASR Corpus](https://sites.google.com/view/gramvaaniasrchallenge/dataset?authuser=0)
- [ULCA ASR Corpus](https://github.com/Open-Speech-EkStep/ULCA-asr-dataset-corpus#hindi-labelled--total-duration-is-239876-hours)
- [Shrutilipi ASR Corpus](https://ai4bharat.org/shrutilipi)
- [Google/Fleurs Train+Dev set](https://huggingface.co/datasets/google/fleurs)
Evaluation Data:
- [GramVaani ASR Corpus Test Set](https://sites.google.com/view/gramvaaniasrchallenge/dataset?authuser=0)
- [Google/Fleurs Test Set](https://huggingface.co/datasets/google/fleurs)
## Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1.75e-05
- train_batch_size: 48
- eval_batch_size: 32
- seed: 22
- optimizer: adamw_bnb_8bit
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20000
- training_steps: 19377 (Initially set to 129180 steps)
- mixed_precision_training: True
## Acknowledgement
This work was done at [Speech Lab, IIT Madras](https://asr.iitm.ac.in/).
The compute resources for this work were funded by "Bhashini: National Language translation Mission" project of the Ministry of Electronics and Information Technology (MeitY), Government of India. |