|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.utils import BaseOutput |
|
|
|
try: |
|
from diffusers.utils import apply_forward_hook |
|
except: |
|
from diffusers.utils.accelerate_utils import apply_forward_hook |
|
|
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder |
|
|
|
|
|
@dataclass |
|
class AutoencoderKLOutput(BaseOutput): |
|
""" |
|
Output of AutoencoderKL encoding method. |
|
|
|
Args: |
|
latent_dist (`DiagonalGaussianDistribution`): |
|
Encoded outputs of `Encoder` represented as the mean and logvar of `DiagonalGaussianDistribution`. |
|
`DiagonalGaussianDistribution` allows for sampling latents from the distribution. |
|
""" |
|
|
|
latent_dist: "DiagonalGaussianDistribution" |
|
|
|
|
|
class AutoencoderKL(ModelMixin, ConfigMixin): |
|
r"""Variational Autoencoder (VAE) model with KL loss from the paper Auto-Encoding Variational Bayes by Diederik P. Kingma |
|
and Max Welling. |
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for the generic methods the library |
|
implements for all the model (such as downloading or saving, etc.) |
|
|
|
Parameters: |
|
in_channels (int, *optional*, defaults to 3): Number of channels in the input image. |
|
out_channels (int, *optional*, defaults to 3): Number of channels in the output. |
|
down_block_types (`Tuple[str]`, *optional*, defaults to : |
|
obj:`("DownEncoderBlock2D",)`): Tuple of downsample block types. |
|
up_block_types (`Tuple[str]`, *optional*, defaults to : |
|
obj:`("UpDecoderBlock2D",)`): Tuple of upsample block types. |
|
block_out_channels (`Tuple[int]`, *optional*, defaults to : |
|
obj:`(64,)`): Tuple of block output channels. |
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use. |
|
latent_channels (`int`, *optional*, defaults to 4): Number of channels in the latent space. |
|
sample_size (`int`, *optional*, defaults to `32`): TODO |
|
scaling_factor (`float`, *optional*, defaults to 0.18215): |
|
The component-wise standard deviation of the trained latent space computed using the first batch of the |
|
training set. This is used to scale the latent space to have unit variance when training the diffusion |
|
model. The latents are scaled with the formula `z = z * scaling_factor` before being passed to the |
|
diffusion model. When decoding, the latents are scaled back to the original scale with the formula: `z = 1 |
|
/ scaling_factor * z`. For more details, refer to sections 4.3.2 and D.1 of the [High-Resolution Image |
|
Synthesis with Latent Diffusion Models](https://arxiv.org/abs/2112.10752) paper. |
|
""" |
|
|
|
_supports_gradient_checkpointing = True |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
in_channels: int = 3, |
|
out_channels: int = 3, |
|
down_block_types: Tuple[str] = ("DownEncoderBlock2D",), |
|
up_block_types: Tuple[str] = ("UpDecoderBlock2D",), |
|
block_out_channels: Tuple[int] = (64,), |
|
layers_per_block: int = 1, |
|
act_fn: str = "silu", |
|
latent_channels: int = 4, |
|
norm_num_groups: int = 32, |
|
sample_size: int = 32, |
|
scaling_factor: float = 0.18215, |
|
): |
|
super().__init__() |
|
|
|
|
|
self.encoder = Encoder( |
|
in_channels=in_channels, |
|
out_channels=latent_channels, |
|
down_block_types=down_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
act_fn=act_fn, |
|
norm_num_groups=norm_num_groups, |
|
double_z=True, |
|
) |
|
|
|
|
|
self.decoder = Decoder( |
|
in_channels=latent_channels, |
|
out_channels=out_channels, |
|
up_block_types=up_block_types, |
|
block_out_channels=block_out_channels, |
|
layers_per_block=layers_per_block, |
|
norm_num_groups=norm_num_groups, |
|
act_fn=act_fn, |
|
) |
|
|
|
self.quant_conv = nn.Conv2d(2 * latent_channels, 2 * latent_channels, 1) |
|
self.post_quant_conv = nn.Conv2d(latent_channels, latent_channels, 1) |
|
|
|
self.use_slicing = False |
|
self.use_tiling = False |
|
|
|
|
|
self.tile_sample_min_size = self.config.sample_size |
|
sample_size = ( |
|
self.config.sample_size[0] |
|
if isinstance(self.config.sample_size, (list, tuple)) |
|
else self.config.sample_size |
|
) |
|
self.tile_latent_min_size = int(sample_size / (2 ** (len(self.config.block_out_channels) - 1))) |
|
self.tile_overlap_factor = 0.25 |
|
|
|
def _set_gradient_checkpointing(self, module, value=False): |
|
if isinstance(module, (Encoder, Decoder)): |
|
module.gradient_checkpointing = value |
|
|
|
def enable_tiling(self, use_tiling: bool = True): |
|
r""" |
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to |
|
compute decoding and encoding in several steps. This is useful to save a large amount of memory and to allow |
|
the processing of larger images. |
|
""" |
|
self.use_tiling = use_tiling |
|
|
|
def disable_tiling(self): |
|
r""" |
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously invoked, this method will go back to |
|
computing decoding in one step. |
|
""" |
|
self.enable_tiling(False) |
|
|
|
def enable_slicing(self): |
|
r""" |
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to |
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes. |
|
""" |
|
self.use_slicing = True |
|
|
|
def disable_slicing(self): |
|
r""" |
|
Disable sliced VAE decoding. If `enable_slicing` was previously invoked, this method will go back to computing |
|
decoding in one step. |
|
""" |
|
self.use_slicing = False |
|
|
|
@apply_forward_hook |
|
def encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput: |
|
if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): |
|
return self.tiled_encode(x, return_dict=return_dict) |
|
|
|
h = self.encoder(x) |
|
moments = self.quant_conv(h) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
|
if not return_dict: |
|
return (posterior,) |
|
|
|
return AutoencoderKLOutput(latent_dist=posterior) |
|
|
|
def _decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: |
|
if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): |
|
return self.tiled_decode(z, return_dict=return_dict) |
|
|
|
z = self.post_quant_conv(z) |
|
dec = self.decoder(z) |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
@apply_forward_hook |
|
def decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: |
|
if self.use_slicing and z.shape[0] > 1: |
|
decoded_slices = [self._decode(z_slice).sample for z_slice in z.split(1)] |
|
decoded = torch.cat(decoded_slices) |
|
else: |
|
decoded = self._decode(z).sample |
|
|
|
if not return_dict: |
|
return (decoded,) |
|
|
|
return DecoderOutput(sample=decoded) |
|
|
|
def blend_v(self, a, b, blend_extent): |
|
for y in range(min(a.shape[2], b.shape[2], blend_extent)): |
|
b[:, :, y, :] = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) |
|
return b |
|
|
|
def blend_h(self, a, b, blend_extent): |
|
for x in range(min(a.shape[3], b.shape[3], blend_extent)): |
|
b[:, :, :, x] = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) |
|
return b |
|
|
|
def tiled_encode(self, x: torch.FloatTensor, return_dict: bool = True) -> AutoencoderKLOutput: |
|
r"""Encode a batch of images using a tiled encoder. |
|
|
|
Args: |
|
When this option is enabled, the VAE will split the input tensor into tiles to compute encoding in several |
|
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled encoding is: |
|
different from non-tiled encoding due to each tile using a different encoder. To avoid tiling artifacts, the |
|
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the |
|
look of the output, but they should be much less noticeable. |
|
x (`torch.FloatTensor`): Input batch of images. return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`AutoencoderKLOutput`] instead of a plain tuple. |
|
""" |
|
overlap_size = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor)) |
|
blend_extent = int(self.tile_latent_min_size * self.tile_overlap_factor) |
|
row_limit = self.tile_latent_min_size - blend_extent |
|
|
|
|
|
rows = [] |
|
for i in range(0, x.shape[2], overlap_size): |
|
row = [] |
|
for j in range(0, x.shape[3], overlap_size): |
|
tile = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] |
|
tile = self.encoder(tile) |
|
tile = self.quant_conv(tile) |
|
row.append(tile) |
|
rows.append(row) |
|
result_rows = [] |
|
for i, row in enumerate(rows): |
|
result_row = [] |
|
for j, tile in enumerate(row): |
|
|
|
|
|
if i > 0: |
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) |
|
if j > 0: |
|
tile = self.blend_h(row[j - 1], tile, blend_extent) |
|
result_row.append(tile[:, :, :row_limit, :row_limit]) |
|
result_rows.append(torch.cat(result_row, dim=3)) |
|
|
|
moments = torch.cat(result_rows, dim=2) |
|
posterior = DiagonalGaussianDistribution(moments) |
|
|
|
if not return_dict: |
|
return (posterior,) |
|
|
|
return AutoencoderKLOutput(latent_dist=posterior) |
|
|
|
def tiled_decode(self, z: torch.FloatTensor, return_dict: bool = True) -> Union[DecoderOutput, torch.FloatTensor]: |
|
r"""Decode a batch of images using a tiled decoder. |
|
|
|
Args: |
|
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding in several |
|
steps. This is useful to keep memory use constant regardless of image size. The end result of tiled decoding is: |
|
different from non-tiled decoding due to each tile using a different decoder. To avoid tiling artifacts, the |
|
tiles overlap and are blended together to form a smooth output. You may still see tile-sized changes in the |
|
look of the output, but they should be much less noticeable. |
|
z (`torch.FloatTensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to |
|
`True`): |
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. |
|
""" |
|
overlap_size = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor)) |
|
blend_extent = int(self.tile_sample_min_size * self.tile_overlap_factor) |
|
row_limit = self.tile_sample_min_size - blend_extent |
|
|
|
|
|
|
|
rows = [] |
|
for i in range(0, z.shape[2], overlap_size): |
|
row = [] |
|
for j in range(0, z.shape[3], overlap_size): |
|
tile = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] |
|
tile = self.post_quant_conv(tile) |
|
decoded = self.decoder(tile) |
|
row.append(decoded) |
|
rows.append(row) |
|
result_rows = [] |
|
for i, row in enumerate(rows): |
|
result_row = [] |
|
for j, tile in enumerate(row): |
|
|
|
|
|
if i > 0: |
|
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) |
|
if j > 0: |
|
tile = self.blend_h(row[j - 1], tile, blend_extent) |
|
result_row.append(tile[:, :, :row_limit, :row_limit]) |
|
result_rows.append(torch.cat(result_row, dim=3)) |
|
|
|
dec = torch.cat(result_rows, dim=2) |
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|
|
def forward( |
|
self, |
|
sample: torch.FloatTensor, |
|
sample_posterior: bool = False, |
|
return_dict: bool = True, |
|
generator: Optional[torch.Generator] = None, |
|
) -> Union[DecoderOutput, torch.FloatTensor]: |
|
r""" |
|
Args: |
|
sample (`torch.FloatTensor`): Input sample. |
|
sample_posterior (`bool`, *optional*, defaults to `False`): |
|
Whether to sample from the posterior. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. |
|
""" |
|
x = sample |
|
posterior = self.encode(x).latent_dist |
|
if sample_posterior: |
|
z = posterior.sample(generator=generator) |
|
else: |
|
z = posterior.mode() |
|
dec = self.decode(z).sample |
|
|
|
if not return_dict: |
|
return (dec,) |
|
|
|
return DecoderOutput(sample=dec) |
|
|