|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.models.embeddings import ImagePositionalEmbeddings |
|
from diffusers.utils import BaseOutput |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.models.attention import FeedForward, AdaLayerNorm |
|
from diffusers.models.attention_processor import Attention |
|
|
|
|
|
@dataclass |
|
class Transformer2DModelOutput(BaseOutput): |
|
""" |
|
Args: |
|
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): |
|
Hidden states conditioned on `encoder_hidden_states` input. If discrete, returns probability distributions |
|
for the unnoised latent pixels. |
|
""" |
|
|
|
sample: torch.FloatTensor |
|
|
|
|
|
if is_xformers_available(): |
|
import xformers |
|
import xformers.ops |
|
else: |
|
xformers = None |
|
|
|
|
|
class Transformer2DModel(ModelMixin, ConfigMixin): |
|
""" |
|
Transformer model for image-like data. Takes either discrete (classes of vector embeddings) or continuous (actual |
|
embeddings) inputs. |
|
|
|
When input is continuous: First, project the input (aka embedding) and reshape to b, t, d. Then apply standard |
|
transformer action. Finally, reshape to image. |
|
|
|
When input is discrete: First, input (classes of latent pixels) is converted to embeddings and has positional |
|
embeddings applied, see `ImagePositionalEmbeddings`. Then apply standard transformer action. Finally, predict |
|
classes of unnoised image. |
|
|
|
Note that it is assumed one of the input classes is the masked latent pixel. The predicted classes of the unnoised |
|
image do not contain a prediction for the masked pixel as the unnoised image cannot be masked. |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. |
|
in_channels (`int`, *optional*): |
|
Pass if the input is continuous. The number of channels in the input and output. |
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use. |
|
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images. |
|
Note that this is fixed at training time as it is used for learning a number of position embeddings. See |
|
`ImagePositionalEmbeddings`. |
|
num_vector_embeds (`int`, *optional*): |
|
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels. |
|
Includes the class for the masked latent pixel. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`. |
|
The number of diffusion steps used during training. Note that this is fixed at training time as it is used |
|
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for |
|
up to but not more than steps than `num_embeds_ada_norm`. |
|
attention_bias (`bool`, *optional*): |
|
Configure if the TransformerBlocks' attention should contain a bias parameter. |
|
""" |
|
|
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
sample_size: Optional[int] = None, |
|
num_vector_embeds: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
use_linear_projection: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
): |
|
super().__init__() |
|
self.use_linear_projection = use_linear_projection |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
|
|
|
|
self.is_input_continuous = in_channels is not None |
|
self.is_input_vectorized = num_vector_embeds is not None |
|
|
|
if self.is_input_continuous and self.is_input_vectorized: |
|
raise ValueError( |
|
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make" |
|
" sure that either `in_channels` or `num_vector_embeds` is None." |
|
) |
|
elif not self.is_input_continuous and not self.is_input_vectorized: |
|
raise ValueError( |
|
f"Has to define either `in_channels`: {in_channels} or `num_vector_embeds`: {num_vector_embeds}. Make" |
|
" sure that either `in_channels` or `num_vector_embeds` is not None." |
|
) |
|
|
|
|
|
if self.is_input_continuous: |
|
self.in_channels = in_channels |
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) |
|
if use_linear_projection: |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
else: |
|
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) |
|
elif self.is_input_vectorized: |
|
assert sample_size is not None, "Transformer2DModel over discrete input must provide sample_size" |
|
assert num_vector_embeds is not None, "Transformer2DModel over discrete input must provide num_embed" |
|
|
|
self.height = sample_size |
|
self.width = sample_size |
|
self.num_vector_embeds = num_vector_embeds |
|
self.num_latent_pixels = self.height * self.width |
|
|
|
self.latent_image_embedding = ImagePositionalEmbeddings( |
|
num_embed=num_vector_embeds, embed_dim=inner_dim, height=self.height, width=self.width |
|
) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
BasicTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
if self.is_input_continuous: |
|
if use_linear_projection: |
|
self.proj_out = nn.Linear(in_channels, inner_dim) |
|
else: |
|
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) |
|
elif self.is_input_vectorized: |
|
self.norm_out = nn.LayerNorm(inner_dim) |
|
self.out = nn.Linear(inner_dim, self.num_vector_embeds - 1) |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): |
|
""" |
|
Args: |
|
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`. |
|
When continous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input |
|
hidden_states |
|
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
timestep ( `torch.long`, *optional*): |
|
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`] |
|
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample |
|
tensor. |
|
""" |
|
|
|
if self.is_input_continuous: |
|
batch, channel, height, weight = hidden_states.shape |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states) |
|
if not self.use_linear_projection: |
|
hidden_states = self.proj_in(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) |
|
else: |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) |
|
hidden_states = self.proj_in(hidden_states) |
|
elif self.is_input_vectorized: |
|
hidden_states = self.latent_image_embedding(hidden_states) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
hidden_states = block(hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timestep) |
|
|
|
|
|
if self.is_input_continuous: |
|
if not self.use_linear_projection: |
|
hidden_states = ( |
|
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
) |
|
hidden_states = self.proj_out(hidden_states) |
|
else: |
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = ( |
|
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
) |
|
|
|
output = hidden_states + residual |
|
elif self.is_input_vectorized: |
|
hidden_states = self.norm_out(hidden_states) |
|
logits = self.out(hidden_states) |
|
|
|
logits = logits.permute(0, 2, 1) |
|
|
|
|
|
output = F.log_softmax(logits.double(), dim=1).float() |
|
|
|
if not return_dict: |
|
return (output,) |
|
|
|
return Transformer2DModelOutput(sample=output) |
|
|
|
|
|
class AttentionBlock(nn.Module): |
|
""" |
|
An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted |
|
to the N-d case. |
|
https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. |
|
Uses three q, k, v linear layers to compute attention. |
|
|
|
Parameters: |
|
channels (`int`): The number of channels in the input and output. |
|
num_head_channels (`int`, *optional*): |
|
The number of channels in each head. If None, then `num_heads` = 1. |
|
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for group norm. |
|
rescale_output_factor (`float`, *optional*, defaults to 1.0): The factor to rescale the output by. |
|
eps (`float`, *optional*, defaults to 1e-5): The epsilon value to use for group norm. |
|
""" |
|
|
|
|
|
|
|
def __init__( |
|
self, |
|
channels: int, |
|
num_head_channels: Optional[int] = None, |
|
norm_num_groups: int = 32, |
|
rescale_output_factor: float = 1.0, |
|
eps: float = 1e-5, |
|
): |
|
super().__init__() |
|
self.channels = channels |
|
|
|
self.num_heads = channels // num_head_channels if num_head_channels is not None else 1 |
|
self.num_head_size = num_head_channels |
|
self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=norm_num_groups, eps=eps, affine=True) |
|
|
|
|
|
self.query = nn.Linear(channels, channels) |
|
self.key = nn.Linear(channels, channels) |
|
self.value = nn.Linear(channels, channels) |
|
|
|
self.rescale_output_factor = rescale_output_factor |
|
self.proj_attn = nn.Linear(channels, channels, 1) |
|
|
|
self._use_memory_efficient_attention_xformers = False |
|
|
|
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, attention_op: None): |
|
if not is_xformers_available(): |
|
raise ModuleNotFoundError( |
|
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" |
|
" xformers", |
|
name="xformers", |
|
) |
|
elif not torch.cuda.is_available(): |
|
raise ValueError( |
|
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" |
|
" available for GPU " |
|
) |
|
else: |
|
try: |
|
|
|
_ = xformers.ops.memory_efficient_attention( |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
) |
|
except Exception as e: |
|
raise e |
|
self._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers |
|
|
|
def reshape_heads_to_batch_dim(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.num_heads |
|
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) |
|
return tensor |
|
|
|
def reshape_batch_dim_to_heads(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.num_heads |
|
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) |
|
return tensor |
|
|
|
def forward(self, hidden_states): |
|
residual = hidden_states |
|
batch, channel, height, width = hidden_states.shape |
|
|
|
|
|
hidden_states = self.group_norm(hidden_states) |
|
|
|
hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2) |
|
|
|
|
|
query_proj = self.query(hidden_states) |
|
key_proj = self.key(hidden_states) |
|
value_proj = self.value(hidden_states) |
|
|
|
scale = 1 / math.sqrt(self.channels / self.num_heads) |
|
|
|
query_proj = self.reshape_heads_to_batch_dim(query_proj) |
|
key_proj = self.reshape_heads_to_batch_dim(key_proj) |
|
value_proj = self.reshape_heads_to_batch_dim(value_proj) |
|
|
|
if self._use_memory_efficient_attention_xformers: |
|
|
|
hidden_states = xformers.ops.memory_efficient_attention(query_proj, key_proj, value_proj, attn_bias=None) |
|
hidden_states = hidden_states.to(query_proj.dtype) |
|
else: |
|
attention_scores = torch.baddbmm( |
|
torch.empty( |
|
query_proj.shape[0], |
|
query_proj.shape[1], |
|
key_proj.shape[1], |
|
dtype=query_proj.dtype, |
|
device=query_proj.device, |
|
), |
|
query_proj, |
|
key_proj.transpose(-1, -2), |
|
beta=0, |
|
alpha=scale, |
|
) |
|
attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype) |
|
hidden_states = torch.bmm(attention_probs, value_proj) |
|
|
|
|
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
|
|
|
|
hidden_states = self.proj_attn(hidden_states) |
|
|
|
hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width) |
|
|
|
|
|
hidden_states = (hidden_states + residual) / self.rescale_output_factor |
|
return hidden_states |
|
|
|
|
|
class BasicTransformerBlock(nn.Module): |
|
r""" |
|
A basic Transformer block. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input and output. |
|
num_attention_heads (`int`): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm (: |
|
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`. |
|
attention_bias (: |
|
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
num_attention_heads: int, |
|
attention_head_dim: int, |
|
dropout=0.0, |
|
cross_attention_dim: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
attention_bias: bool = False, |
|
only_cross_attention: bool = False, |
|
upcast_attention: bool = False, |
|
): |
|
super().__init__() |
|
self.only_cross_attention = only_cross_attention |
|
self.use_ada_layer_norm = num_embeds_ada_norm is not None |
|
|
|
|
|
self.attn1 = CrossAttention( |
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
cross_attention_dim=cross_attention_dim if only_cross_attention else None, |
|
upcast_attention=upcast_attention, |
|
) |
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) |
|
|
|
|
|
if cross_attention_dim is not None: |
|
self.attn2 = CrossAttention( |
|
query_dim=dim, |
|
cross_attention_dim=cross_attention_dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
) |
|
else: |
|
self.attn2 = None |
|
|
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) |
|
|
|
if cross_attention_dim is not None: |
|
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) |
|
else: |
|
self.norm2 = None |
|
|
|
|
|
self.norm3 = nn.LayerNorm(dim) |
|
|
|
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, attention_op: None): |
|
if not is_xformers_available(): |
|
print("Here is how to install it") |
|
raise ModuleNotFoundError( |
|
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" |
|
" xformers", |
|
name="xformers", |
|
) |
|
elif not torch.cuda.is_available(): |
|
raise ValueError( |
|
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" |
|
" available for GPU " |
|
) |
|
else: |
|
try: |
|
|
|
_ = xformers.ops.memory_efficient_attention( |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
) |
|
except Exception as e: |
|
raise e |
|
self.attn1._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers |
|
if self.attn2 is not None: |
|
self.attn2._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None): |
|
|
|
norm_hidden_states = ( |
|
self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) |
|
) |
|
|
|
if self.only_cross_attention: |
|
hidden_states = ( |
|
self.attn1(norm_hidden_states, encoder_hidden_states, attention_mask=attention_mask) + hidden_states |
|
) |
|
else: |
|
hidden_states = self.attn1(norm_hidden_states, attention_mask=attention_mask) + hidden_states |
|
|
|
if self.attn2 is not None: |
|
|
|
norm_hidden_states = ( |
|
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) |
|
) |
|
hidden_states = ( |
|
self.attn2( |
|
norm_hidden_states, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask |
|
) |
|
+ hidden_states |
|
) |
|
|
|
|
|
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states |
|
|
|
return hidden_states |
|
|
|
|
|
class CrossAttention(nn.Module): |
|
r""" |
|
A cross attention layer. |
|
|
|
Parameters: |
|
query_dim (`int`): The number of channels in the query. |
|
cross_attention_dim (`int`, *optional*): |
|
The number of channels in the encoder_hidden_states. If not given, defaults to `query_dim`. |
|
heads (`int`, *optional*, defaults to 8): The number of heads to use for multi-head attention. |
|
dim_head (`int`, *optional*, defaults to 64): The number of channels in each head. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
bias (`bool`, *optional*, defaults to False): |
|
Set to `True` for the query, key, and value linear layers to contain a bias parameter. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
query_dim: int, |
|
cross_attention_dim: Optional[int] = None, |
|
heads: int = 8, |
|
dim_head: int = 64, |
|
dropout: float = 0.0, |
|
bias=False, |
|
upcast_attention: bool = False, |
|
upcast_softmax: bool = False, |
|
added_kv_proj_dim: Optional[int] = None, |
|
norm_num_groups: Optional[int] = None, |
|
): |
|
super().__init__() |
|
inner_dim = dim_head * heads |
|
cross_attention_dim = cross_attention_dim if cross_attention_dim is not None else query_dim |
|
self.upcast_attention = upcast_attention |
|
self.upcast_softmax = upcast_softmax |
|
|
|
self.scale = dim_head**-0.5 |
|
|
|
self.heads = heads |
|
|
|
|
|
|
|
self.sliceable_head_dim = heads |
|
self._slice_size = None |
|
self._use_memory_efficient_attention_xformers = False |
|
self.added_kv_proj_dim = added_kv_proj_dim |
|
|
|
if norm_num_groups is not None: |
|
self.group_norm = nn.GroupNorm(num_channels=inner_dim, num_groups=norm_num_groups, eps=1e-5, affine=True) |
|
else: |
|
self.group_norm = None |
|
|
|
self.to_q = nn.Linear(query_dim, inner_dim, bias=bias) |
|
self.to_k = nn.Linear(cross_attention_dim, inner_dim, bias=bias) |
|
self.to_v = nn.Linear(cross_attention_dim, inner_dim, bias=bias) |
|
|
|
if self.added_kv_proj_dim is not None: |
|
self.add_k_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) |
|
self.add_v_proj = nn.Linear(added_kv_proj_dim, cross_attention_dim) |
|
|
|
self.to_out = nn.ModuleList([]) |
|
self.to_out.append(nn.Linear(inner_dim, query_dim)) |
|
self.to_out.append(nn.Dropout(dropout)) |
|
|
|
def reshape_heads_to_batch_dim(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.heads |
|
tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) |
|
return tensor |
|
|
|
def reshape_batch_dim_to_heads(self, tensor): |
|
batch_size, seq_len, dim = tensor.shape |
|
head_size = self.heads |
|
tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) |
|
tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) |
|
return tensor |
|
|
|
def set_attention_slice(self, slice_size): |
|
if slice_size is not None and slice_size > self.sliceable_head_dim: |
|
raise ValueError(f"slice_size {slice_size} has to be smaller or equal to {self.sliceable_head_dim}.") |
|
|
|
self._slice_size = slice_size |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None): |
|
batch_size, sequence_length, _ = hidden_states.shape |
|
|
|
encoder_hidden_states = encoder_hidden_states |
|
|
|
if self.group_norm is not None: |
|
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = self.to_q(hidden_states) |
|
dim = query.shape[-1] |
|
query = self.reshape_heads_to_batch_dim(query) |
|
|
|
if self.added_kv_proj_dim is not None: |
|
key = self.to_k(hidden_states) |
|
value = self.to_v(hidden_states) |
|
encoder_hidden_states_key_proj = self.add_k_proj(encoder_hidden_states) |
|
encoder_hidden_states_value_proj = self.add_v_proj(encoder_hidden_states) |
|
|
|
key = self.reshape_heads_to_batch_dim(key) |
|
value = self.reshape_heads_to_batch_dim(value) |
|
encoder_hidden_states_key_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_key_proj) |
|
encoder_hidden_states_value_proj = self.reshape_heads_to_batch_dim(encoder_hidden_states_value_proj) |
|
|
|
key = torch.concat([encoder_hidden_states_key_proj, key], dim=1) |
|
value = torch.concat([encoder_hidden_states_value_proj, value], dim=1) |
|
else: |
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
key = self.to_k(encoder_hidden_states) |
|
value = self.to_v(encoder_hidden_states) |
|
|
|
key = self.reshape_heads_to_batch_dim(key) |
|
value = self.reshape_heads_to_batch_dim(value) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.shape[-1] != query.shape[1]: |
|
target_length = query.shape[1] |
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) |
|
|
|
|
|
if self._use_memory_efficient_attention_xformers: |
|
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) |
|
|
|
hidden_states = hidden_states.to(query.dtype) |
|
else: |
|
if self._slice_size is None or query.shape[0] // self._slice_size == 1: |
|
hidden_states = self._attention(query, key, value, attention_mask) |
|
else: |
|
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) |
|
|
|
|
|
hidden_states = self.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = self.to_out[1](hidden_states) |
|
return hidden_states |
|
|
|
def _attention(self, query, key, value, attention_mask=None): |
|
if self.upcast_attention: |
|
query = query.float() |
|
key = key.float() |
|
|
|
attention_scores = torch.baddbmm( |
|
torch.empty(query.shape[0], query.shape[1], key.shape[1], dtype=query.dtype, device=query.device), |
|
query, |
|
key.transpose(-1, -2), |
|
beta=0, |
|
alpha=self.scale, |
|
) |
|
|
|
if attention_mask is not None: |
|
attention_scores = attention_scores + attention_mask |
|
|
|
if self.upcast_softmax: |
|
attention_scores = attention_scores.float() |
|
|
|
attention_probs = attention_scores.softmax(dim=-1) |
|
|
|
|
|
attention_probs = attention_probs.to(value.dtype) |
|
|
|
|
|
hidden_states = torch.bmm(attention_probs, value) |
|
|
|
|
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
return hidden_states |
|
|
|
def _sliced_attention(self, query, key, value, sequence_length, dim, attention_mask): |
|
batch_size_attention = query.shape[0] |
|
hidden_states = torch.zeros( |
|
(batch_size_attention, sequence_length, dim // self.heads), device=query.device, dtype=query.dtype |
|
) |
|
slice_size = self._slice_size if self._slice_size is not None else hidden_states.shape[0] |
|
for i in range(hidden_states.shape[0] // slice_size): |
|
start_idx = i * slice_size |
|
end_idx = (i + 1) * slice_size |
|
|
|
query_slice = query[start_idx:end_idx] |
|
key_slice = key[start_idx:end_idx] |
|
|
|
if self.upcast_attention: |
|
query_slice = query_slice.float() |
|
key_slice = key_slice.float() |
|
|
|
attn_slice = torch.baddbmm( |
|
torch.empty(slice_size, query.shape[1], key.shape[1], dtype=query_slice.dtype, device=query.device), |
|
query_slice, |
|
key_slice.transpose(-1, -2), |
|
beta=0, |
|
alpha=self.scale, |
|
) |
|
|
|
if attention_mask is not None: |
|
attn_slice = attn_slice + attention_mask[start_idx:end_idx] |
|
|
|
if self.upcast_softmax: |
|
attn_slice = attn_slice.float() |
|
|
|
attn_slice = attn_slice.softmax(dim=-1) |
|
|
|
|
|
attn_slice = attn_slice.to(value.dtype) |
|
attn_slice = torch.bmm(attn_slice, value[start_idx:end_idx]) |
|
|
|
hidden_states[start_idx:end_idx] = attn_slice |
|
|
|
|
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
return hidden_states |
|
|
|
def _memory_efficient_attention_xformers(self, query, key, value, attention_mask): |
|
query = query.contiguous() |
|
key = key.contiguous() |
|
value = value.contiguous() |
|
hidden_states = xformers.ops.memory_efficient_attention(query, key, value, attn_bias=attention_mask) |
|
hidden_states = self.reshape_batch_dim_to_heads(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class FeedForward(nn.Module): |
|
r""" |
|
A feed-forward layer. |
|
|
|
Parameters: |
|
dim (`int`): The number of channels in the input. |
|
dim_out (`int`, *optional*): The number of channels in the output. If not given, defaults to `dim`. |
|
mult (`int`, *optional*, defaults to 4): The multiplier to use for the hidden dimension. |
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim: int, |
|
dim_out: Optional[int] = None, |
|
mult: int = 4, |
|
dropout: float = 0.0, |
|
activation_fn: str = "geglu", |
|
): |
|
super().__init__() |
|
inner_dim = int(dim * mult) |
|
dim_out = dim_out if dim_out is not None else dim |
|
|
|
if activation_fn == "gelu": |
|
act_fn = GELU(dim, inner_dim) |
|
elif activation_fn == "geglu": |
|
act_fn = GEGLU(dim, inner_dim) |
|
elif activation_fn == "geglu-approximate": |
|
act_fn = ApproximateGELU(dim, inner_dim) |
|
|
|
self.net = nn.ModuleList([]) |
|
|
|
self.net.append(act_fn) |
|
|
|
self.net.append(nn.Dropout(dropout)) |
|
|
|
self.net.append(nn.Linear(inner_dim, dim_out)) |
|
|
|
def forward(self, hidden_states): |
|
for module in self.net: |
|
hidden_states = module(hidden_states) |
|
return hidden_states |
|
|
|
|
|
class GELU(nn.Module): |
|
r""" |
|
GELU activation function |
|
""" |
|
|
|
def __init__(self, dim_in: int, dim_out: int): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out) |
|
|
|
def gelu(self, gate): |
|
if gate.device.type != "mps": |
|
return F.gelu(gate) |
|
|
|
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states = self.proj(hidden_states) |
|
hidden_states = self.gelu(hidden_states) |
|
return hidden_states |
|
|
|
|
|
|
|
class GEGLU(nn.Module): |
|
r""" |
|
A variant of the gated linear unit activation function from https://arxiv.org/abs/2002.05202. |
|
|
|
Parameters: |
|
dim_in (`int`): The number of channels in the input. |
|
dim_out (`int`): The number of channels in the output. |
|
""" |
|
|
|
def __init__(self, dim_in: int, dim_out: int): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out * 2) |
|
|
|
def gelu(self, gate): |
|
if gate.device.type != "mps": |
|
return F.gelu(gate) |
|
|
|
return F.gelu(gate.to(dtype=torch.float32)).to(dtype=gate.dtype) |
|
|
|
def forward(self, hidden_states): |
|
hidden_states, gate = self.proj(hidden_states).chunk(2, dim=-1) |
|
return hidden_states * self.gelu(gate) |
|
|
|
|
|
class ApproximateGELU(nn.Module): |
|
""" |
|
The approximate form of Gaussian Error Linear Unit (GELU) |
|
|
|
For more details, see section 2: https://arxiv.org/abs/1606.08415 |
|
""" |
|
|
|
def __init__(self, dim_in: int, dim_out: int): |
|
super().__init__() |
|
self.proj = nn.Linear(dim_in, dim_out) |
|
|
|
def forward(self, x): |
|
x = self.proj(x) |
|
return x * torch.sigmoid(1.702 * x) |
|
|
|
|
|
class AdaLayerNorm(nn.Module): |
|
""" |
|
Norm layer modified to incorporate timestep embeddings. |
|
""" |
|
|
|
def __init__(self, embedding_dim, num_embeddings): |
|
super().__init__() |
|
self.emb = nn.Embedding(num_embeddings, embedding_dim) |
|
self.silu = nn.SiLU() |
|
self.linear = nn.Linear(embedding_dim, embedding_dim * 2) |
|
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False) |
|
|
|
def forward(self, x, timestep): |
|
emb = self.linear(self.silu(self.emb(timestep))) |
|
scale, shift = torch.chunk(emb, 2) |
|
x = self.norm(x) * (1 + scale) + shift |
|
return x |
|
|
|
|
|
class DualTransformer2DModel(nn.Module): |
|
""" |
|
Dual transformer wrapper that combines two `Transformer2DModel`s for mixed inference. |
|
|
|
Parameters: |
|
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention. |
|
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head. |
|
in_channels (`int`, *optional*): |
|
Pass if the input is continuous. The number of channels in the input and output. |
|
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use. |
|
dropout (`float`, *optional*, defaults to 0.1): The dropout probability to use. |
|
cross_attention_dim (`int`, *optional*): The number of encoder_hidden_states dimensions to use. |
|
sample_size (`int`, *optional*): Pass if the input is discrete. The width of the latent images. |
|
Note that this is fixed at training time as it is used for learning a number of position embeddings. See |
|
`ImagePositionalEmbeddings`. |
|
num_vector_embeds (`int`, *optional*): |
|
Pass if the input is discrete. The number of classes of the vector embeddings of the latent pixels. |
|
Includes the class for the masked latent pixel. |
|
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward. |
|
num_embeds_ada_norm ( `int`, *optional*): Pass if at least one of the norm_layers is `AdaLayerNorm`. |
|
The number of diffusion steps used during training. Note that this is fixed at training time as it is used |
|
to learn a number of embeddings that are added to the hidden states. During inference, you can denoise for |
|
up to but not more than steps than `num_embeds_ada_norm`. |
|
attention_bias (`bool`, *optional*): |
|
Configure if the TransformerBlocks' attention should contain a bias parameter. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
num_attention_heads: int = 16, |
|
attention_head_dim: int = 88, |
|
in_channels: Optional[int] = None, |
|
num_layers: int = 1, |
|
dropout: float = 0.0, |
|
norm_num_groups: int = 32, |
|
cross_attention_dim: Optional[int] = None, |
|
attention_bias: bool = False, |
|
sample_size: Optional[int] = None, |
|
num_vector_embeds: Optional[int] = None, |
|
activation_fn: str = "geglu", |
|
num_embeds_ada_norm: Optional[int] = None, |
|
): |
|
super().__init__() |
|
self.transformers = nn.ModuleList( |
|
[ |
|
Transformer2DModel( |
|
num_attention_heads=num_attention_heads, |
|
attention_head_dim=attention_head_dim, |
|
in_channels=in_channels, |
|
num_layers=num_layers, |
|
dropout=dropout, |
|
norm_num_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
attention_bias=attention_bias, |
|
sample_size=sample_size, |
|
num_vector_embeds=num_vector_embeds, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
) |
|
for _ in range(2) |
|
] |
|
) |
|
|
|
|
|
|
|
|
|
self.mix_ratio = 0.5 |
|
|
|
|
|
|
|
self.condition_lengths = [77, 257] |
|
|
|
|
|
|
|
self.transformer_index_for_condition = [1, 0] |
|
|
|
def forward( |
|
self, hidden_states, encoder_hidden_states, timestep=None, attention_mask=None, return_dict: bool = True |
|
): |
|
""" |
|
Args: |
|
hidden_states ( When discrete, `torch.LongTensor` of shape `(batch size, num latent pixels)`. |
|
When continuous, `torch.FloatTensor` of shape `(batch size, channel, height, width)`): Input |
|
hidden_states |
|
encoder_hidden_states ( `torch.LongTensor` of shape `(batch size, encoder_hidden_states dim)`, *optional*): |
|
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to |
|
self-attention. |
|
timestep ( `torch.long`, *optional*): |
|
Optional timestep to be applied as an embedding in AdaLayerNorm's. Used to indicate denoising step. |
|
attention_mask (`torch.FloatTensor`, *optional*): |
|
Optional attention mask to be applied in CrossAttention |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple. |
|
|
|
Returns: |
|
[`~models.attention.Transformer2DModelOutput`] or `tuple`: [`~models.attention.Transformer2DModelOutput`] |
|
if `return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample |
|
tensor. |
|
""" |
|
input_states = hidden_states |
|
|
|
encoded_states = [] |
|
tokens_start = 0 |
|
|
|
for i in range(2): |
|
|
|
condition_state = encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] |
|
transformer_index = self.transformer_index_for_condition[i] |
|
encoded_state = self.transformers[transformer_index]( |
|
input_states, |
|
encoder_hidden_states=condition_state, |
|
timestep=timestep, |
|
return_dict=False, |
|
)[0] |
|
encoded_states.append(encoded_state - input_states) |
|
tokens_start += self.condition_lengths[i] |
|
|
|
output_states = encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) |
|
output_states = output_states + input_states |
|
|
|
if not return_dict: |
|
return (output_states,) |
|
|
|
return Transformer2DModelOutput(sample=output_states) |