|
from dataclasses import dataclass |
|
from typing import List, Optional, Tuple, Union |
|
|
|
import torch |
|
import numpy as np |
|
import torch.nn.functional as F |
|
from torch import nn |
|
import torchvision |
|
|
|
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config |
|
from diffusers.models.modeling_utils import ModelMixin |
|
from diffusers.utils import BaseOutput |
|
from diffusers.utils.import_utils import is_xformers_available |
|
from diffusers.models.attention import FeedForward |
|
|
|
|
|
try: |
|
from .diffusers_attention import CrossAttention |
|
from .resnet import Downsample3D, Upsample3D, InflatedConv3d, ResnetBlock3D, ResnetBlock3DCNN |
|
|
|
except: |
|
from diffusers_attention import CrossAttention |
|
from resnet import Downsample3D, Upsample3D, InflatedConv3d, ResnetBlock3D, ResnetBlock3DCNN |
|
|
|
from einops import rearrange, repeat |
|
import math |
|
|
|
import pdb |
|
|
|
|
|
def zero_module(module): |
|
""" |
|
Zero out the parameters of a module and return it. |
|
""" |
|
for p in module.parameters(): |
|
p.detach().zero_() |
|
return module |
|
|
|
|
|
def grid_sample_align(input, grid): |
|
return torch.nn.functional.grid_sample(input=input, grid=grid, mode='bilinear', padding_mode='zeros', align_corners=True) |
|
|
|
|
|
@dataclass |
|
class TemporalTransformer3DModelOutput(BaseOutput): |
|
sample: torch.FloatTensor |
|
|
|
|
|
if is_xformers_available(): |
|
import xformers |
|
import xformers.ops |
|
else: |
|
xformers = None |
|
|
|
|
|
class EmptyTemporalModule3D(nn.Module): |
|
def __init__(self): |
|
super().__init__() |
|
|
|
def forward(self, hidden_states, condition_video=None, encoder_hidden_states=None, timesteps=None, temb=None, attention_mask=None): |
|
return hidden_states |
|
|
|
|
|
class TemporalModule3D(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels=None, |
|
out_channels=None, |
|
|
|
num_attention_layers=None, |
|
num_attention_head=8, |
|
attention_head_dim=None, |
|
cross_attention_dim=768, |
|
temb_channels=512, |
|
|
|
dropout=0., |
|
attention_bias=False, |
|
activation_fn="geglu", |
|
only_cross_attention=False, |
|
upcast_attention=False, |
|
|
|
norm_num_groups=8, |
|
use_linear_projection=True, |
|
use_scale_shift=False, |
|
|
|
attention_block_types: Tuple[str]=None, |
|
cross_frame_attention_mode=None, |
|
temporal_shift_fold_div=None, |
|
temporal_shift_direction=None, |
|
|
|
use_dcn_warpping=None, |
|
use_deformable_conv=None, |
|
|
|
attention_dim_div: int = None, |
|
video_condition=False, |
|
): |
|
super().__init__() |
|
assert len(attention_block_types) == 2 |
|
|
|
self.use_scale_shift = use_scale_shift |
|
self.video_condition = video_condition |
|
|
|
self.non_linearity = nn.SiLU() |
|
|
|
|
|
if self.video_condition: |
|
video_condition_dim = int(out_channels//4) |
|
self.v_cond_conv = ResnetBlock3D(in_channels=3, out_channels=video_condition_dim, temb_channels=temb_channels, groups=3, groups_out=32) |
|
self.resblocks_3d_t = ResnetBlock3DCNN(in_channels=in_channels+video_condition_dim, out_channels=in_channels, kernel=(5,1,1), temb_channels=temb_channels) |
|
else: |
|
self.resblocks_3d_t = ResnetBlock3DCNN(in_channels=in_channels, out_channels=in_channels, kernel=(5,1,1), temb_channels=temb_channels) |
|
|
|
self.resblocks_3d_s = ResnetBlock3D(in_channels=in_channels, out_channels=in_channels, temb_channels=temb_channels, groups=32, groups_out=32) |
|
|
|
|
|
if not (attention_block_types[0]=='' and attention_block_types[1]==''): |
|
attentions = TemporalTransformer3DModel( |
|
num_attention_heads=num_attention_head, |
|
attention_head_dim=attention_head_dim if attention_head_dim is not None else in_channels // num_attention_head // attention_dim_div, |
|
|
|
in_channels=in_channels, |
|
num_layers=num_attention_layers, |
|
dropout=dropout, |
|
norm_num_groups=norm_num_groups, |
|
cross_attention_dim=cross_attention_dim, |
|
attention_bias=attention_bias, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=1000, |
|
use_linear_projection=use_linear_projection, |
|
|
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
|
|
attention_block_types=attention_block_types, |
|
cross_frame_attention_mode=cross_frame_attention_mode, |
|
temporal_shift_fold_div=temporal_shift_fold_div, |
|
temporal_shift_direction=temporal_shift_direction, |
|
|
|
use_dcn_warpping=use_dcn_warpping, |
|
use_deformable_conv=use_deformable_conv, |
|
) |
|
self.attentions = nn.ModuleList([attentions]) |
|
|
|
if use_scale_shift: |
|
self.scale_shift_conv = zero_module(InflatedConv3d(in_channels=in_channels, out_channels=in_channels * 2, kernel_size=1, stride=1, padding=0)) |
|
else: |
|
self.shift_conv = zero_module(InflatedConv3d(in_channels=in_channels, out_channels=in_channels, kernel_size=1, stride=1, padding=0)) |
|
|
|
|
|
def forward(self, hidden_states, condition_video=None, encoder_hidden_states=None, timesteps=None, temb=None, attention_mask=None): |
|
input_tensor = hidden_states |
|
|
|
if self.video_condition: |
|
|
|
assert condition_video is not None |
|
if isinstance(condition_video, dict): |
|
condition_video = condition_video[hidden_states.shape[-1]] |
|
hidden_condition = self.v_cond_conv(condition_video, temb) |
|
hidden_states = torch.cat([hidden_states, hidden_condition], dim=1) |
|
|
|
|
|
hidden_states = self.resblocks_3d_t(hidden_states, temb) |
|
hidden_states = self.resblocks_3d_s(hidden_states, temb) |
|
|
|
if hasattr(self, "attentions"): |
|
for attn in self.attentions: |
|
hidden_states = attn(hidden_states, encoder_hidden_states=encoder_hidden_states, timestep=timesteps).sample |
|
|
|
if self.use_scale_shift: |
|
hidden_states = self.scale_shift_conv(hidden_states) |
|
scale, shift = torch.chunk(hidden_states, chunks=2, dim=1) |
|
hidden_states = (1 + scale) * input_tensor + shift |
|
else: |
|
hidden_states = self.shift_conv(hidden_states) |
|
hidden_states = input_tensor + hidden_states |
|
|
|
return hidden_states |
|
|
|
|
|
class TemporalTransformer3DModel(ModelMixin, ConfigMixin): |
|
@register_to_config |
|
def __init__( |
|
self, |
|
num_attention_heads=None, |
|
attention_head_dim=None, |
|
in_channels=None, |
|
num_layers=None, |
|
dropout=None, |
|
norm_num_groups=None, |
|
cross_attention_dim=None, |
|
attention_bias=None, |
|
activation_fn=None, |
|
num_embeds_ada_norm=None, |
|
use_linear_projection=None, |
|
only_cross_attention=None, |
|
upcast_attention=None, |
|
|
|
attention_block_types=None, |
|
cross_frame_attention_mode=None, |
|
temporal_shift_fold_div=None, |
|
temporal_shift_direction=None, |
|
|
|
use_dcn_warpping=None, |
|
use_deformable_conv=None, |
|
): |
|
super().__init__() |
|
self.use_linear_projection = use_linear_projection |
|
self.num_attention_heads = num_attention_heads |
|
self.attention_head_dim = attention_head_dim |
|
inner_dim = num_attention_heads * attention_head_dim |
|
|
|
|
|
self.in_channels = in_channels |
|
|
|
self.norm = torch.nn.GroupNorm(num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True) |
|
if use_linear_projection: |
|
self.proj_in = nn.Linear(in_channels, inner_dim) |
|
else: |
|
self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) |
|
|
|
|
|
self.transformer_blocks = nn.ModuleList( |
|
[ |
|
TemporalTransformerBlock( |
|
inner_dim, |
|
num_attention_heads, |
|
attention_head_dim, |
|
dropout=dropout, |
|
cross_attention_dim=cross_attention_dim, |
|
activation_fn=activation_fn, |
|
num_embeds_ada_norm=num_embeds_ada_norm, |
|
attention_bias=attention_bias, |
|
only_cross_attention=only_cross_attention, |
|
upcast_attention=upcast_attention, |
|
|
|
attention_block_types=attention_block_types, |
|
cross_frame_attention_mode=cross_frame_attention_mode, |
|
temporal_shift_fold_div=temporal_shift_fold_div, |
|
temporal_shift_direction=temporal_shift_direction, |
|
|
|
use_dcn_warpping=use_dcn_warpping, |
|
use_deformable_conv=use_deformable_conv, |
|
) |
|
for d in range(num_layers) |
|
] |
|
) |
|
|
|
|
|
if use_linear_projection: |
|
self.proj_out = nn.Linear(inner_dim, in_channels) |
|
else: |
|
self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, return_dict: bool = True): |
|
|
|
assert hidden_states.dim() == 5, f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." |
|
video_length = hidden_states.shape[2] |
|
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") |
|
if encoder_hidden_states is not None: |
|
encoder_hidden_states = repeat(encoder_hidden_states, 'b n c -> (b f) n c', f=video_length) |
|
|
|
batch, channel, height, weight = hidden_states.shape |
|
residual = hidden_states |
|
|
|
hidden_states = self.norm(hidden_states) |
|
if not self.use_linear_projection: |
|
hidden_states = self.proj_in(hidden_states) |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) |
|
else: |
|
inner_dim = hidden_states.shape[1] |
|
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(batch, height * weight, inner_dim) |
|
hidden_states = self.proj_in(hidden_states) |
|
|
|
|
|
for block in self.transformer_blocks: |
|
hidden_states = block( |
|
hidden_states, |
|
encoder_hidden_states=encoder_hidden_states, |
|
timestep=timestep, |
|
video_length=video_length |
|
) |
|
|
|
|
|
if not self.use_linear_projection: |
|
hidden_states = ( |
|
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
) |
|
hidden_states = self.proj_out(hidden_states) |
|
else: |
|
hidden_states = self.proj_out(hidden_states) |
|
hidden_states = ( |
|
hidden_states.reshape(batch, height, weight, inner_dim).permute(0, 3, 1, 2).contiguous() |
|
) |
|
|
|
output = hidden_states + residual |
|
|
|
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) |
|
if not return_dict: |
|
return (output,) |
|
|
|
return TemporalTransformer3DModelOutput(sample=output) |
|
|
|
|
|
class TemporalTransformerBlock(nn.Module): |
|
def __init__( |
|
self, |
|
dim=None, |
|
num_attention_heads=None, |
|
attention_head_dim=None, |
|
dropout=None, |
|
cross_attention_dim=None, |
|
activation_fn=None, |
|
num_embeds_ada_norm=None, |
|
attention_bias=None, |
|
only_cross_attention=None, |
|
upcast_attention=None, |
|
|
|
attention_block_types=None, |
|
cross_frame_attention_mode=None, |
|
temporal_shift_fold_div=None, |
|
temporal_shift_direction=None, |
|
|
|
use_dcn_warpping=None, |
|
use_deformable_conv=None, |
|
): |
|
super().__init__() |
|
assert len(attention_block_types) == 2 |
|
|
|
self.only_cross_attention = only_cross_attention |
|
self.use_ada_layer_norm = num_embeds_ada_norm is not None |
|
self.use_dcn_warpping = use_dcn_warpping |
|
|
|
|
|
if not attention_block_types[0] == '': |
|
self.attn_spatial = VersatileSelfAttention( |
|
attention_mode=attention_block_types[0], |
|
|
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
|
|
cross_frame_attention_mode=cross_frame_attention_mode, |
|
temporal_shift_fold_div=temporal_shift_fold_div, |
|
temporal_shift_direction=temporal_shift_direction, |
|
) |
|
nn.init.zeros_(self.attn_spatial.to_out[0].weight.data) |
|
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) |
|
|
|
|
|
self.attn_temporal = VersatileSelfAttention( |
|
attention_mode=attention_block_types[1], |
|
|
|
query_dim=dim, |
|
heads=num_attention_heads, |
|
dim_head=attention_head_dim, |
|
dropout=dropout, |
|
bias=attention_bias, |
|
upcast_attention=upcast_attention, |
|
|
|
cross_frame_attention_mode=cross_frame_attention_mode, |
|
temporal_shift_fold_div=temporal_shift_fold_div, |
|
temporal_shift_direction=temporal_shift_direction, |
|
) |
|
nn.init.zeros_(self.attn_temporal.to_out[0].weight.data) |
|
self.norm2 = AdaLayerNorm(dim, num_embeds_ada_norm) if self.use_ada_layer_norm else nn.LayerNorm(dim) |
|
|
|
self.dcn_module = WarpModule( |
|
in_channels=dim, |
|
use_deformable_conv=use_deformable_conv, |
|
) if use_dcn_warpping else None |
|
|
|
|
|
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) |
|
self.norm3 = nn.LayerNorm(dim) |
|
|
|
|
|
def set_use_memory_efficient_attention_xformers(self, use_memory_efficient_attention_xformers: bool, attention_op: None): |
|
if not is_xformers_available(): |
|
print("Here is how to install it") |
|
raise ModuleNotFoundError( |
|
"Refer to https://github.com/facebookresearch/xformers for more information on how to install" |
|
" xformers", |
|
name="xformers", |
|
) |
|
elif not torch.cuda.is_available(): |
|
raise ValueError( |
|
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is only" |
|
" available for GPU " |
|
) |
|
else: |
|
try: |
|
|
|
_ = xformers.ops.memory_efficient_attention( |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
torch.randn((1, 2, 40), device="cuda"), |
|
) |
|
except Exception as e: |
|
raise e |
|
if hasattr(self, "attn_spatial"): |
|
self.attn_spatial._use_memory_efficient_attention_xformers = use_memory_efficient_attention_xformers |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, timestep=None, attention_mask=None, video_length=None): |
|
|
|
if hasattr(self, "attn_spatial") and hasattr(self, "norm1"): |
|
norm_hidden_states = self.norm1(hidden_states, timestep) if self.use_ada_layer_norm else self.norm1(hidden_states) |
|
hidden_states = self.attn_spatial(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states |
|
|
|
|
|
norm_hidden_states = self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) |
|
if not self.use_dcn_warpping: |
|
hidden_states = self.attn_temporal(norm_hidden_states, attention_mask=attention_mask, video_length=video_length) + hidden_states |
|
else: |
|
hidden_states = self.dcn_module( |
|
hidden_states, |
|
offset_hidden_states=self.attn_temporal(norm_hidden_states, attention_mask=attention_mask, video_length=video_length), |
|
) |
|
|
|
|
|
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states |
|
|
|
return hidden_states |
|
|
|
|
|
class VersatileSelfAttention(CrossAttention): |
|
def __init__( |
|
self, |
|
attention_mode=None, |
|
cross_frame_attention_mode=None, |
|
temporal_shift_fold_div=None, |
|
temporal_shift_direction=None, |
|
temporal_position_encoding=False, |
|
temporal_position_encoding_max_len=24, |
|
*args, **kwargs |
|
): |
|
super().__init__(*args, **kwargs) |
|
assert attention_mode in ("Temporal", "Spatial", "CrossFrame", "SpatialTemporalShift", None) |
|
assert cross_frame_attention_mode in ("0_i-1", "i-1_i", "0_i-1_i", "i-1_i_i+1", None) |
|
|
|
self.attention_mode = attention_mode |
|
|
|
self.cross_frame_attention_mode = cross_frame_attention_mode |
|
|
|
self.temporal_shift_fold_div = temporal_shift_fold_div |
|
self.temporal_shift_direction = temporal_shift_direction |
|
|
|
self.pos_encoder = PositionalEncoding( |
|
kwargs["query_dim"], |
|
dropout=0., |
|
max_len=temporal_position_encoding_max_len |
|
) if temporal_position_encoding else None |
|
|
|
def temporal_token_concat(self, tensor, video_length): |
|
|
|
current_frame_index = torch.arange(video_length) |
|
former_frame_index = current_frame_index - 1 |
|
former_frame_index[0] = 0 |
|
|
|
later_frame_index = current_frame_index + 1 |
|
later_frame_index[-1] = -1 |
|
|
|
|
|
tensor = rearrange(tensor, "(b f) d c -> b f d c", f=video_length) |
|
|
|
if self.cross_frame_attention_mode == "0_i-1": |
|
tensor = torch.cat([tensor[:, [0] * video_length], tensor[:, former_frame_index]], dim=2) |
|
elif self.cross_frame_attention_mode == "i-1_i": |
|
tensor = torch.cat([tensor[:, former_frame_index], tensor[:, current_frame_index]], dim=2) |
|
elif self.cross_frame_attention_mode == "0_i-1_i": |
|
tensor = torch.cat([tensor[:, [0] * video_length], tensor[:, former_frame_index], tensor[:, current_frame_index]], dim=2) |
|
elif self.cross_frame_attention_mode == "i-1_i_i+1": |
|
tensor = torch.cat([tensor[:, former_frame_index], tensor[:, current_frame_index], tensor[:, later_frame_index]], dim=2) |
|
else: |
|
raise NotImplementedError |
|
|
|
tensor = rearrange(tensor, "b f d c -> (b f) d c") |
|
return tensor |
|
|
|
def temporal_shift(self, tensor, video_length): |
|
|
|
|
|
tensor = rearrange(tensor, "(b f) d c -> b f d c", f=video_length) |
|
n_channels = tensor.shape[-1] |
|
fold = n_channels // self.temporal_shift_fold_div |
|
|
|
if self.temporal_shift_direction != "right": |
|
raise NotImplementedError |
|
|
|
tensor_out = torch.zeros_like(tensor) |
|
tensor_out[:, 1:, :, :fold] = tensor[:, :-1, :, :fold] |
|
tensor_out[:, :, :, fold:] = tensor[:, :, :, fold:] |
|
|
|
tensor_out = rearrange(tensor_out, "b f d c -> (b f) d c") |
|
return tensor_out |
|
|
|
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None, video_length=None): |
|
|
|
batch_size, sequence_length, _ = hidden_states.shape |
|
assert encoder_hidden_states is None |
|
|
|
|
|
if self.attention_mode == "Temporal": |
|
|
|
d = hidden_states.shape[1] |
|
hidden_states = rearrange(hidden_states, "(b f) d c -> (b d) f c", f=video_length) |
|
|
|
if self.pos_encoder is not None: |
|
hidden_states = self.pos_encoder(hidden_states) |
|
|
|
encoder_hidden_states = encoder_hidden_states |
|
|
|
if self.group_norm is not None: |
|
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) |
|
|
|
query = self.to_q(hidden_states) |
|
dim = query.shape[-1] |
|
query = self.reshape_heads_to_batch_dim(query) |
|
|
|
if self.added_kv_proj_dim is not None: |
|
raise NotImplementedError |
|
|
|
encoder_hidden_states = encoder_hidden_states if encoder_hidden_states is not None else hidden_states |
|
key = self.to_k(encoder_hidden_states) |
|
value = self.to_v(encoder_hidden_states) |
|
|
|
if self.attention_mode == "SpatialTemporalShift": |
|
key = self.temporal_shift(key, video_length=video_length) |
|
value = self.temporal_shift(value, video_length=video_length) |
|
elif self.attention_mode == "CrossFrame": |
|
key = self.temporal_token_concat(key, video_length=video_length) |
|
value = self.temporal_token_concat(value, video_length=video_length) |
|
|
|
key = self.reshape_heads_to_batch_dim(key) |
|
value = self.reshape_heads_to_batch_dim(value) |
|
|
|
if attention_mask is not None: |
|
if attention_mask.shape[-1] != query.shape[1]: |
|
target_length = query.shape[1] |
|
attention_mask = F.pad(attention_mask, (0, target_length), value=0.0) |
|
attention_mask = attention_mask.repeat_interleave(self.heads, dim=0) |
|
|
|
|
|
if self._use_memory_efficient_attention_xformers: |
|
hidden_states = self._memory_efficient_attention_xformers(query, key, value, attention_mask) |
|
|
|
hidden_states = hidden_states.to(query.dtype) |
|
else: |
|
if self._slice_size is None or query.shape[0] // self._slice_size == 1: |
|
hidden_states = self._attention(query, key, value, attention_mask) |
|
else: |
|
hidden_states = self._sliced_attention(query, key, value, sequence_length, dim, attention_mask) |
|
|
|
|
|
hidden_states = self.to_out[0](hidden_states) |
|
|
|
|
|
hidden_states = self.to_out[1](hidden_states) |
|
|
|
if self.attention_mode == "Temporal": |
|
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) |
|
|
|
return hidden_states |
|
|
|
|
|
class WarpModule(nn.Module): |
|
def __init__( |
|
self, |
|
in_channels=None, |
|
use_deformable_conv=None, |
|
): |
|
super().__init__() |
|
self.use_deformable_conv = use_deformable_conv |
|
|
|
self.conv = None |
|
self.dcn_weight = None |
|
if use_deformable_conv: |
|
self.conv = nn.Conv2d(in_channels*2, 27, kernel_size=3, stride=1, padding=1) |
|
self.dcn_weight = nn.Parameter(torch.randn(in_channels, in_channels, 3, 3) / np.sqrt(in_channels * 3 * 3)) |
|
self.alpha = nn.Parameter(torch.zeros(1, in_channels, 1, 1)) |
|
else: |
|
self.conv = zero_module(nn.Conv2d(in_channels, 2, kernel_size=3, stride=1, padding=1)) |
|
|
|
def forward(self, hidden_states, offset_hidden_states): |
|
|
|
spatial_dim = hidden_states.shape[1] |
|
size = int(spatial_dim ** 0.5) |
|
assert size ** 2 == spatial_dim |
|
|
|
hidden_states = rearrange(hidden_states, "b (h w) c -> b c h w", h=size) |
|
offset_hidden_states = rearrange(offset_hidden_states, "b (h w) c -> b c h w", h=size) |
|
|
|
concat_hidden_states = torch.cat([hidden_states, offset_hidden_states], dim=1) |
|
|
|
input_tensor = hidden_states |
|
if self.use_deformable_conv: |
|
offset_x, offset_y, offsets_mask = torch.chunk(self.conv(concat_hidden_states), chunks=3, dim=1) |
|
offsets_mask = offsets_mask.sigmoid() * 2 |
|
offsets = torch.cat([offset_x, offset_y], dim=1) |
|
hidden_states = torchvision.ops.deform_conv2d( |
|
hidden_states, |
|
offset=offsets, |
|
weight=self.dcn_weight, |
|
mask=offsets_mask, |
|
padding=1, |
|
) |
|
hidden_states = self.alpha * hidden_states + input_tensor |
|
|
|
else: |
|
offsets = self.conv(concat_hidden_states) |
|
hidden_states = self.optical_flow_warping(hidden_states, offsets) |
|
|
|
hidden_states = rearrange(hidden_states, "b c h w -> b (h w) c") |
|
return hidden_states |
|
|
|
@staticmethod |
|
def optical_flow_warping(x, flo): |
|
""" |
|
warp an image/tensor (im2) back to im1, according to the optical flow |
|
|
|
x: [B, C, H, W] (im2) |
|
flo: [B, 2, H, W] flow |
|
pad_mode (optional): ref to https://pytorch.org/docs/stable/nn.functional.html#grid-sample |
|
"zeros": use 0 for out-of-bound grid locations, |
|
"border": use border values for out-of-bound grid locations |
|
""" |
|
dtype = x.dtype |
|
if dtype != torch.float32: |
|
x = x.to(torch.float32) |
|
B, C, H, W = x.size() |
|
|
|
xx = torch.arange(0, W).view(1, -1).repeat(H, 1) |
|
yy = torch.arange(0, H).view(-1, 1).repeat(1, W) |
|
xx = xx.view(1, 1, H, W).repeat(B, 1, 1, 1) |
|
yy = yy.view(1, 1, H, W).repeat(B, 1, 1, 1) |
|
grid = torch.cat((xx, yy), 1).float().to(flo.device) |
|
|
|
vgrid = grid + flo |
|
|
|
|
|
vgrid[:, 0, :, :] = 2.0 * vgrid[:, 0, :, :].clone() / max(W - 1, 1) - 1.0 |
|
vgrid[:, 1, :, :] = 2.0 * vgrid[:, 1, :, :].clone() / max(H - 1, 1) - 1.0 |
|
|
|
vgrid = vgrid.permute(0, 2, 3, 1) |
|
|
|
output = grid_sample_align(x, vgrid) |
|
|
|
|
|
mask = torch.ones_like(x) |
|
|
|
mask = grid_sample_align(x, vgrid) |
|
|
|
|
|
mask[mask < 0.9999] = 0 |
|
mask[mask > 0] = 1 |
|
results = output * mask |
|
if dtype != torch.float32: |
|
results = results.to(dtype) |
|
return results |
|
|
|
|
|
class AdaLayerNorm(nn.Module): |
|
""" |
|
Norm layer modified to incorporate timestep embeddings. |
|
""" |
|
def __init__(self, embedding_dim, num_embeddings): |
|
super().__init__() |
|
self.emb = nn.Embedding(num_embeddings, embedding_dim) |
|
self.silu = nn.SiLU() |
|
self.linear = nn.Linear(embedding_dim, embedding_dim * 2) |
|
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False) |
|
|
|
def forward(self, x, timestep): |
|
timestep = repeat(timestep, "b -> (b r)", r=x.shape[0] // timestep.shape[0]) |
|
|
|
emb = self.linear(self.silu(self.emb(timestep))).unsqueeze(1) |
|
scale, shift = torch.chunk(emb, 2, dim=-1) |
|
x = self.norm(x) * (1 + scale) + shift |
|
return x |
|
|
|
|