File size: 4,558 Bytes
3b2f39e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
---

language: en
datasets:
- librispeech_asr
tags:
- audio
- automatic-speech-recognition
- hf-asr-leaderboard
license: apache-2.0
widget:
- example_title: Librispeech sample 1
  src: https://cdn-media.huggingface.co/speech_samples/sample1.flac
- example_title: Librispeech sample 2
  src: https://cdn-media.huggingface.co/speech_samples/sample2.flac
model-index:
- name: wav2vec2-base-960h
  results:
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: LibriSpeech (clean)
      type: librispeech_asr
      config: clean
      split: test
      args: 
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 3.4
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: LibriSpeech (other)
      type: librispeech_asr
      config: other
      split: test
      args: 
        language: en
    metrics:
    - name: Test WER
      type: wer
      value: 8.6
---


# Wav2Vec2-Base-960h

[Facebook's Wav2Vec2](https://ai.facebook.com/blog/wav2vec-20-learning-the-structure-of-speech-from-raw-audio/)

The base model pretrained and fine-tuned on 960 hours of Librispeech on 16kHz sampled speech audio. When using the model
make sure that your speech input is also sampled at 16Khz.

[Paper](https://arxiv.org/abs/2006.11477)

Authors: Alexei Baevski, Henry Zhou, Abdelrahman Mohamed, Michael Auli

**Abstract**

We show for the first time that learning powerful representations from speech audio alone followed by fine-tuning on transcribed speech can outperform the best semi-supervised methods while being conceptually simpler. wav2vec 2.0 masks the speech input in the latent space and solves a contrastive task defined over a quantization of the latent representations which are jointly learned. Experiments using all labeled data of Librispeech achieve 1.8/3.3 WER on the clean/other test sets. When lowering the amount of labeled data to one hour, wav2vec 2.0 outperforms the previous state of the art on the 100 hour subset while using 100 times less labeled data. Using just ten minutes of labeled data and pre-training on 53k hours of unlabeled data still achieves 4.8/8.2 WER. This demonstrates the feasibility of speech recognition with limited amounts of labeled data.

The original model can be found under https://github.com/pytorch/fairseq/tree/master/examples/wav2vec#wav2vec-20.


# Usage

To transcribe audio files the model can be used as a standalone acoustic model as follows:

```python

 from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC

 from datasets import load_dataset

 import torch

 

 # load model and tokenizer

 processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")

 model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h")

     

 # load dummy dataset and read soundfiles

 ds = load_dataset("patrickvonplaten/librispeech_asr_dummy", "clean", split="validation")

 

 # tokenize

 input_values = processor(ds[0]["audio"]["array"], return_tensors="pt", padding="longest").input_values  # Batch size 1

 

 # retrieve logits

 logits = model(input_values).logits

 

 # take argmax and decode

 predicted_ids = torch.argmax(logits, dim=-1)

 transcription = processor.batch_decode(predicted_ids)

 ```
 
 ## Evaluation
 
 This code snippet shows how to evaluate **facebook/wav2vec2-base-960h** on LibriSpeech's "clean" and "other" test data.
 
```python

from datasets import load_dataset

from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor

import torch

from jiwer import wer





librispeech_eval = load_dataset("librispeech_asr", "clean", split="test")



model = Wav2Vec2ForCTC.from_pretrained("facebook/wav2vec2-base-960h").to("cuda")

processor = Wav2Vec2Processor.from_pretrained("facebook/wav2vec2-base-960h")



def map_to_pred(batch):

    input_values = processor(batch["audio"]["array"], return_tensors="pt", padding="longest").input_values

    with torch.no_grad():

        logits = model(input_values.to("cuda")).logits



    predicted_ids = torch.argmax(logits, dim=-1)

    transcription = processor.batch_decode(predicted_ids)

    batch["transcription"] = transcription

    return batch



result = librispeech_eval.map(map_to_pred, batched=True, batch_size=1, remove_columns=["audio"])



print("WER:", wer(result["text"], result["transcription"]))

```

*Result (WER)*:

| "clean" | "other" |
|---|---|
| 3.4 | 8.6 |