gte-small
Browse files- 1_Pooling/config.json +7 -0
- README.md +2699 -0
- config.json +24 -0
- model.safetensors +3 -0
- modules.json +20 -0
- onnx/model.onnx +3 -0
- onnx/model_quantized.onnx +3 -0
- pytorch_model.bin +3 -0
- quantize_config.json +30 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +7 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 384,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
CHANGED
@@ -1,3 +1,2702 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
license: mit
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
tags:
|
3 |
+
- mteb
|
4 |
+
- sentence-similarity
|
5 |
+
- sentence-transformers
|
6 |
+
- Sentence Transformers
|
7 |
+
model-index:
|
8 |
+
- name: gte-small
|
9 |
+
results:
|
10 |
+
- task:
|
11 |
+
type: Classification
|
12 |
+
dataset:
|
13 |
+
type: mteb/amazon_counterfactual
|
14 |
+
name: MTEB AmazonCounterfactualClassification (en)
|
15 |
+
config: en
|
16 |
+
split: test
|
17 |
+
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
|
18 |
+
metrics:
|
19 |
+
- type: accuracy
|
20 |
+
value: 73.22388059701493
|
21 |
+
- type: ap
|
22 |
+
value: 36.09895941426988
|
23 |
+
- type: f1
|
24 |
+
value: 67.3205651539195
|
25 |
+
- task:
|
26 |
+
type: Classification
|
27 |
+
dataset:
|
28 |
+
type: mteb/amazon_polarity
|
29 |
+
name: MTEB AmazonPolarityClassification
|
30 |
+
config: default
|
31 |
+
split: test
|
32 |
+
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
|
33 |
+
metrics:
|
34 |
+
- type: accuracy
|
35 |
+
value: 91.81894999999999
|
36 |
+
- type: ap
|
37 |
+
value: 88.5240138417305
|
38 |
+
- type: f1
|
39 |
+
value: 91.80367382706962
|
40 |
+
- task:
|
41 |
+
type: Classification
|
42 |
+
dataset:
|
43 |
+
type: mteb/amazon_reviews_multi
|
44 |
+
name: MTEB AmazonReviewsClassification (en)
|
45 |
+
config: en
|
46 |
+
split: test
|
47 |
+
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
|
48 |
+
metrics:
|
49 |
+
- type: accuracy
|
50 |
+
value: 48.032
|
51 |
+
- type: f1
|
52 |
+
value: 47.4490665674719
|
53 |
+
- task:
|
54 |
+
type: Retrieval
|
55 |
+
dataset:
|
56 |
+
type: arguana
|
57 |
+
name: MTEB ArguAna
|
58 |
+
config: default
|
59 |
+
split: test
|
60 |
+
revision: None
|
61 |
+
metrics:
|
62 |
+
- type: map_at_1
|
63 |
+
value: 30.725
|
64 |
+
- type: map_at_10
|
65 |
+
value: 46.604
|
66 |
+
- type: map_at_100
|
67 |
+
value: 47.535
|
68 |
+
- type: map_at_1000
|
69 |
+
value: 47.538000000000004
|
70 |
+
- type: map_at_3
|
71 |
+
value: 41.833
|
72 |
+
- type: map_at_5
|
73 |
+
value: 44.61
|
74 |
+
- type: mrr_at_1
|
75 |
+
value: 31.223
|
76 |
+
- type: mrr_at_10
|
77 |
+
value: 46.794000000000004
|
78 |
+
- type: mrr_at_100
|
79 |
+
value: 47.725
|
80 |
+
- type: mrr_at_1000
|
81 |
+
value: 47.727000000000004
|
82 |
+
- type: mrr_at_3
|
83 |
+
value: 42.07
|
84 |
+
- type: mrr_at_5
|
85 |
+
value: 44.812000000000005
|
86 |
+
- type: ndcg_at_1
|
87 |
+
value: 30.725
|
88 |
+
- type: ndcg_at_10
|
89 |
+
value: 55.440999999999995
|
90 |
+
- type: ndcg_at_100
|
91 |
+
value: 59.134
|
92 |
+
- type: ndcg_at_1000
|
93 |
+
value: 59.199
|
94 |
+
- type: ndcg_at_3
|
95 |
+
value: 45.599000000000004
|
96 |
+
- type: ndcg_at_5
|
97 |
+
value: 50.637
|
98 |
+
- type: precision_at_1
|
99 |
+
value: 30.725
|
100 |
+
- type: precision_at_10
|
101 |
+
value: 8.364
|
102 |
+
- type: precision_at_100
|
103 |
+
value: 0.991
|
104 |
+
- type: precision_at_1000
|
105 |
+
value: 0.1
|
106 |
+
- type: precision_at_3
|
107 |
+
value: 18.848000000000003
|
108 |
+
- type: precision_at_5
|
109 |
+
value: 13.77
|
110 |
+
- type: recall_at_1
|
111 |
+
value: 30.725
|
112 |
+
- type: recall_at_10
|
113 |
+
value: 83.64200000000001
|
114 |
+
- type: recall_at_100
|
115 |
+
value: 99.14699999999999
|
116 |
+
- type: recall_at_1000
|
117 |
+
value: 99.644
|
118 |
+
- type: recall_at_3
|
119 |
+
value: 56.543
|
120 |
+
- type: recall_at_5
|
121 |
+
value: 68.848
|
122 |
+
- task:
|
123 |
+
type: Clustering
|
124 |
+
dataset:
|
125 |
+
type: mteb/arxiv-clustering-p2p
|
126 |
+
name: MTEB ArxivClusteringP2P
|
127 |
+
config: default
|
128 |
+
split: test
|
129 |
+
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
|
130 |
+
metrics:
|
131 |
+
- type: v_measure
|
132 |
+
value: 47.90178078197678
|
133 |
+
- task:
|
134 |
+
type: Clustering
|
135 |
+
dataset:
|
136 |
+
type: mteb/arxiv-clustering-s2s
|
137 |
+
name: MTEB ArxivClusteringS2S
|
138 |
+
config: default
|
139 |
+
split: test
|
140 |
+
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
|
141 |
+
metrics:
|
142 |
+
- type: v_measure
|
143 |
+
value: 40.25728393431922
|
144 |
+
- task:
|
145 |
+
type: Reranking
|
146 |
+
dataset:
|
147 |
+
type: mteb/askubuntudupquestions-reranking
|
148 |
+
name: MTEB AskUbuntuDupQuestions
|
149 |
+
config: default
|
150 |
+
split: test
|
151 |
+
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
|
152 |
+
metrics:
|
153 |
+
- type: map
|
154 |
+
value: 61.720297062897764
|
155 |
+
- type: mrr
|
156 |
+
value: 75.24139295607439
|
157 |
+
- task:
|
158 |
+
type: STS
|
159 |
+
dataset:
|
160 |
+
type: mteb/biosses-sts
|
161 |
+
name: MTEB BIOSSES
|
162 |
+
config: default
|
163 |
+
split: test
|
164 |
+
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
|
165 |
+
metrics:
|
166 |
+
- type: cos_sim_pearson
|
167 |
+
value: 89.43527309184616
|
168 |
+
- type: cos_sim_spearman
|
169 |
+
value: 88.17128615100206
|
170 |
+
- type: euclidean_pearson
|
171 |
+
value: 87.89922623089282
|
172 |
+
- type: euclidean_spearman
|
173 |
+
value: 87.96104039655451
|
174 |
+
- type: manhattan_pearson
|
175 |
+
value: 87.9818290932077
|
176 |
+
- type: manhattan_spearman
|
177 |
+
value: 88.00923426576885
|
178 |
+
- task:
|
179 |
+
type: Classification
|
180 |
+
dataset:
|
181 |
+
type: mteb/banking77
|
182 |
+
name: MTEB Banking77Classification
|
183 |
+
config: default
|
184 |
+
split: test
|
185 |
+
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
|
186 |
+
metrics:
|
187 |
+
- type: accuracy
|
188 |
+
value: 84.0844155844156
|
189 |
+
- type: f1
|
190 |
+
value: 84.01485017302213
|
191 |
+
- task:
|
192 |
+
type: Clustering
|
193 |
+
dataset:
|
194 |
+
type: mteb/biorxiv-clustering-p2p
|
195 |
+
name: MTEB BiorxivClusteringP2P
|
196 |
+
config: default
|
197 |
+
split: test
|
198 |
+
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
|
199 |
+
metrics:
|
200 |
+
- type: v_measure
|
201 |
+
value: 38.36574769259432
|
202 |
+
- task:
|
203 |
+
type: Clustering
|
204 |
+
dataset:
|
205 |
+
type: mteb/biorxiv-clustering-s2s
|
206 |
+
name: MTEB BiorxivClusteringS2S
|
207 |
+
config: default
|
208 |
+
split: test
|
209 |
+
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
|
210 |
+
metrics:
|
211 |
+
- type: v_measure
|
212 |
+
value: 35.4857033165287
|
213 |
+
- task:
|
214 |
+
type: Retrieval
|
215 |
+
dataset:
|
216 |
+
type: BeIR/cqadupstack
|
217 |
+
name: MTEB CQADupstackAndroidRetrieval
|
218 |
+
config: default
|
219 |
+
split: test
|
220 |
+
revision: None
|
221 |
+
metrics:
|
222 |
+
- type: map_at_1
|
223 |
+
value: 30.261
|
224 |
+
- type: map_at_10
|
225 |
+
value: 42.419000000000004
|
226 |
+
- type: map_at_100
|
227 |
+
value: 43.927
|
228 |
+
- type: map_at_1000
|
229 |
+
value: 44.055
|
230 |
+
- type: map_at_3
|
231 |
+
value: 38.597
|
232 |
+
- type: map_at_5
|
233 |
+
value: 40.701
|
234 |
+
- type: mrr_at_1
|
235 |
+
value: 36.91
|
236 |
+
- type: mrr_at_10
|
237 |
+
value: 48.02
|
238 |
+
- type: mrr_at_100
|
239 |
+
value: 48.658
|
240 |
+
- type: mrr_at_1000
|
241 |
+
value: 48.708
|
242 |
+
- type: mrr_at_3
|
243 |
+
value: 44.945
|
244 |
+
- type: mrr_at_5
|
245 |
+
value: 46.705000000000005
|
246 |
+
- type: ndcg_at_1
|
247 |
+
value: 36.91
|
248 |
+
- type: ndcg_at_10
|
249 |
+
value: 49.353
|
250 |
+
- type: ndcg_at_100
|
251 |
+
value: 54.456
|
252 |
+
- type: ndcg_at_1000
|
253 |
+
value: 56.363
|
254 |
+
- type: ndcg_at_3
|
255 |
+
value: 43.483
|
256 |
+
- type: ndcg_at_5
|
257 |
+
value: 46.150999999999996
|
258 |
+
- type: precision_at_1
|
259 |
+
value: 36.91
|
260 |
+
- type: precision_at_10
|
261 |
+
value: 9.700000000000001
|
262 |
+
- type: precision_at_100
|
263 |
+
value: 1.557
|
264 |
+
- type: precision_at_1000
|
265 |
+
value: 0.202
|
266 |
+
- type: precision_at_3
|
267 |
+
value: 21.078
|
268 |
+
- type: precision_at_5
|
269 |
+
value: 15.421999999999999
|
270 |
+
- type: recall_at_1
|
271 |
+
value: 30.261
|
272 |
+
- type: recall_at_10
|
273 |
+
value: 63.242
|
274 |
+
- type: recall_at_100
|
275 |
+
value: 84.09100000000001
|
276 |
+
- type: recall_at_1000
|
277 |
+
value: 96.143
|
278 |
+
- type: recall_at_3
|
279 |
+
value: 46.478
|
280 |
+
- type: recall_at_5
|
281 |
+
value: 53.708
|
282 |
+
- task:
|
283 |
+
type: Retrieval
|
284 |
+
dataset:
|
285 |
+
type: BeIR/cqadupstack
|
286 |
+
name: MTEB CQADupstackEnglishRetrieval
|
287 |
+
config: default
|
288 |
+
split: test
|
289 |
+
revision: None
|
290 |
+
metrics:
|
291 |
+
- type: map_at_1
|
292 |
+
value: 31.145
|
293 |
+
- type: map_at_10
|
294 |
+
value: 40.996
|
295 |
+
- type: map_at_100
|
296 |
+
value: 42.266999999999996
|
297 |
+
- type: map_at_1000
|
298 |
+
value: 42.397
|
299 |
+
- type: map_at_3
|
300 |
+
value: 38.005
|
301 |
+
- type: map_at_5
|
302 |
+
value: 39.628
|
303 |
+
- type: mrr_at_1
|
304 |
+
value: 38.344
|
305 |
+
- type: mrr_at_10
|
306 |
+
value: 46.827000000000005
|
307 |
+
- type: mrr_at_100
|
308 |
+
value: 47.446
|
309 |
+
- type: mrr_at_1000
|
310 |
+
value: 47.489
|
311 |
+
- type: mrr_at_3
|
312 |
+
value: 44.448
|
313 |
+
- type: mrr_at_5
|
314 |
+
value: 45.747
|
315 |
+
- type: ndcg_at_1
|
316 |
+
value: 38.344
|
317 |
+
- type: ndcg_at_10
|
318 |
+
value: 46.733000000000004
|
319 |
+
- type: ndcg_at_100
|
320 |
+
value: 51.103
|
321 |
+
- type: ndcg_at_1000
|
322 |
+
value: 53.075
|
323 |
+
- type: ndcg_at_3
|
324 |
+
value: 42.366
|
325 |
+
- type: ndcg_at_5
|
326 |
+
value: 44.242
|
327 |
+
- type: precision_at_1
|
328 |
+
value: 38.344
|
329 |
+
- type: precision_at_10
|
330 |
+
value: 8.822000000000001
|
331 |
+
- type: precision_at_100
|
332 |
+
value: 1.417
|
333 |
+
- type: precision_at_1000
|
334 |
+
value: 0.187
|
335 |
+
- type: precision_at_3
|
336 |
+
value: 20.403
|
337 |
+
- type: precision_at_5
|
338 |
+
value: 14.306
|
339 |
+
- type: recall_at_1
|
340 |
+
value: 31.145
|
341 |
+
- type: recall_at_10
|
342 |
+
value: 56.909
|
343 |
+
- type: recall_at_100
|
344 |
+
value: 75.274
|
345 |
+
- type: recall_at_1000
|
346 |
+
value: 87.629
|
347 |
+
- type: recall_at_3
|
348 |
+
value: 43.784
|
349 |
+
- type: recall_at_5
|
350 |
+
value: 49.338
|
351 |
+
- task:
|
352 |
+
type: Retrieval
|
353 |
+
dataset:
|
354 |
+
type: BeIR/cqadupstack
|
355 |
+
name: MTEB CQADupstackGamingRetrieval
|
356 |
+
config: default
|
357 |
+
split: test
|
358 |
+
revision: None
|
359 |
+
metrics:
|
360 |
+
- type: map_at_1
|
361 |
+
value: 38.83
|
362 |
+
- type: map_at_10
|
363 |
+
value: 51.553000000000004
|
364 |
+
- type: map_at_100
|
365 |
+
value: 52.581
|
366 |
+
- type: map_at_1000
|
367 |
+
value: 52.638
|
368 |
+
- type: map_at_3
|
369 |
+
value: 48.112
|
370 |
+
- type: map_at_5
|
371 |
+
value: 50.095
|
372 |
+
- type: mrr_at_1
|
373 |
+
value: 44.513999999999996
|
374 |
+
- type: mrr_at_10
|
375 |
+
value: 54.998000000000005
|
376 |
+
- type: mrr_at_100
|
377 |
+
value: 55.650999999999996
|
378 |
+
- type: mrr_at_1000
|
379 |
+
value: 55.679
|
380 |
+
- type: mrr_at_3
|
381 |
+
value: 52.602000000000004
|
382 |
+
- type: mrr_at_5
|
383 |
+
value: 53.931
|
384 |
+
- type: ndcg_at_1
|
385 |
+
value: 44.513999999999996
|
386 |
+
- type: ndcg_at_10
|
387 |
+
value: 57.67400000000001
|
388 |
+
- type: ndcg_at_100
|
389 |
+
value: 61.663999999999994
|
390 |
+
- type: ndcg_at_1000
|
391 |
+
value: 62.743
|
392 |
+
- type: ndcg_at_3
|
393 |
+
value: 51.964
|
394 |
+
- type: ndcg_at_5
|
395 |
+
value: 54.773
|
396 |
+
- type: precision_at_1
|
397 |
+
value: 44.513999999999996
|
398 |
+
- type: precision_at_10
|
399 |
+
value: 9.423
|
400 |
+
- type: precision_at_100
|
401 |
+
value: 1.2309999999999999
|
402 |
+
- type: precision_at_1000
|
403 |
+
value: 0.13699999999999998
|
404 |
+
- type: precision_at_3
|
405 |
+
value: 23.323
|
406 |
+
- type: precision_at_5
|
407 |
+
value: 16.163
|
408 |
+
- type: recall_at_1
|
409 |
+
value: 38.83
|
410 |
+
- type: recall_at_10
|
411 |
+
value: 72.327
|
412 |
+
- type: recall_at_100
|
413 |
+
value: 89.519
|
414 |
+
- type: recall_at_1000
|
415 |
+
value: 97.041
|
416 |
+
- type: recall_at_3
|
417 |
+
value: 57.206
|
418 |
+
- type: recall_at_5
|
419 |
+
value: 63.88399999999999
|
420 |
+
- task:
|
421 |
+
type: Retrieval
|
422 |
+
dataset:
|
423 |
+
type: BeIR/cqadupstack
|
424 |
+
name: MTEB CQADupstackGisRetrieval
|
425 |
+
config: default
|
426 |
+
split: test
|
427 |
+
revision: None
|
428 |
+
metrics:
|
429 |
+
- type: map_at_1
|
430 |
+
value: 25.484
|
431 |
+
- type: map_at_10
|
432 |
+
value: 34.527
|
433 |
+
- type: map_at_100
|
434 |
+
value: 35.661
|
435 |
+
- type: map_at_1000
|
436 |
+
value: 35.739
|
437 |
+
- type: map_at_3
|
438 |
+
value: 32.199
|
439 |
+
- type: map_at_5
|
440 |
+
value: 33.632
|
441 |
+
- type: mrr_at_1
|
442 |
+
value: 27.458
|
443 |
+
- type: mrr_at_10
|
444 |
+
value: 36.543
|
445 |
+
- type: mrr_at_100
|
446 |
+
value: 37.482
|
447 |
+
- type: mrr_at_1000
|
448 |
+
value: 37.543
|
449 |
+
- type: mrr_at_3
|
450 |
+
value: 34.256
|
451 |
+
- type: mrr_at_5
|
452 |
+
value: 35.618
|
453 |
+
- type: ndcg_at_1
|
454 |
+
value: 27.458
|
455 |
+
- type: ndcg_at_10
|
456 |
+
value: 39.396
|
457 |
+
- type: ndcg_at_100
|
458 |
+
value: 44.742
|
459 |
+
- type: ndcg_at_1000
|
460 |
+
value: 46.708
|
461 |
+
- type: ndcg_at_3
|
462 |
+
value: 34.817
|
463 |
+
- type: ndcg_at_5
|
464 |
+
value: 37.247
|
465 |
+
- type: precision_at_1
|
466 |
+
value: 27.458
|
467 |
+
- type: precision_at_10
|
468 |
+
value: 5.976999999999999
|
469 |
+
- type: precision_at_100
|
470 |
+
value: 0.907
|
471 |
+
- type: precision_at_1000
|
472 |
+
value: 0.11100000000000002
|
473 |
+
- type: precision_at_3
|
474 |
+
value: 14.878
|
475 |
+
- type: precision_at_5
|
476 |
+
value: 10.35
|
477 |
+
- type: recall_at_1
|
478 |
+
value: 25.484
|
479 |
+
- type: recall_at_10
|
480 |
+
value: 52.317
|
481 |
+
- type: recall_at_100
|
482 |
+
value: 76.701
|
483 |
+
- type: recall_at_1000
|
484 |
+
value: 91.408
|
485 |
+
- type: recall_at_3
|
486 |
+
value: 40.043
|
487 |
+
- type: recall_at_5
|
488 |
+
value: 45.879
|
489 |
+
- task:
|
490 |
+
type: Retrieval
|
491 |
+
dataset:
|
492 |
+
type: BeIR/cqadupstack
|
493 |
+
name: MTEB CQADupstackMathematicaRetrieval
|
494 |
+
config: default
|
495 |
+
split: test
|
496 |
+
revision: None
|
497 |
+
metrics:
|
498 |
+
- type: map_at_1
|
499 |
+
value: 16.719
|
500 |
+
- type: map_at_10
|
501 |
+
value: 25.269000000000002
|
502 |
+
- type: map_at_100
|
503 |
+
value: 26.442
|
504 |
+
- type: map_at_1000
|
505 |
+
value: 26.557
|
506 |
+
- type: map_at_3
|
507 |
+
value: 22.56
|
508 |
+
- type: map_at_5
|
509 |
+
value: 24.082
|
510 |
+
- type: mrr_at_1
|
511 |
+
value: 20.896
|
512 |
+
- type: mrr_at_10
|
513 |
+
value: 29.982999999999997
|
514 |
+
- type: mrr_at_100
|
515 |
+
value: 30.895
|
516 |
+
- type: mrr_at_1000
|
517 |
+
value: 30.961
|
518 |
+
- type: mrr_at_3
|
519 |
+
value: 27.239
|
520 |
+
- type: mrr_at_5
|
521 |
+
value: 28.787000000000003
|
522 |
+
- type: ndcg_at_1
|
523 |
+
value: 20.896
|
524 |
+
- type: ndcg_at_10
|
525 |
+
value: 30.814000000000004
|
526 |
+
- type: ndcg_at_100
|
527 |
+
value: 36.418
|
528 |
+
- type: ndcg_at_1000
|
529 |
+
value: 39.182
|
530 |
+
- type: ndcg_at_3
|
531 |
+
value: 25.807999999999996
|
532 |
+
- type: ndcg_at_5
|
533 |
+
value: 28.143
|
534 |
+
- type: precision_at_1
|
535 |
+
value: 20.896
|
536 |
+
- type: precision_at_10
|
537 |
+
value: 5.821
|
538 |
+
- type: precision_at_100
|
539 |
+
value: 0.991
|
540 |
+
- type: precision_at_1000
|
541 |
+
value: 0.136
|
542 |
+
- type: precision_at_3
|
543 |
+
value: 12.562000000000001
|
544 |
+
- type: precision_at_5
|
545 |
+
value: 9.254
|
546 |
+
- type: recall_at_1
|
547 |
+
value: 16.719
|
548 |
+
- type: recall_at_10
|
549 |
+
value: 43.155
|
550 |
+
- type: recall_at_100
|
551 |
+
value: 67.831
|
552 |
+
- type: recall_at_1000
|
553 |
+
value: 87.617
|
554 |
+
- type: recall_at_3
|
555 |
+
value: 29.259
|
556 |
+
- type: recall_at_5
|
557 |
+
value: 35.260999999999996
|
558 |
+
- task:
|
559 |
+
type: Retrieval
|
560 |
+
dataset:
|
561 |
+
type: BeIR/cqadupstack
|
562 |
+
name: MTEB CQADupstackPhysicsRetrieval
|
563 |
+
config: default
|
564 |
+
split: test
|
565 |
+
revision: None
|
566 |
+
metrics:
|
567 |
+
- type: map_at_1
|
568 |
+
value: 29.398999999999997
|
569 |
+
- type: map_at_10
|
570 |
+
value: 39.876
|
571 |
+
- type: map_at_100
|
572 |
+
value: 41.205999999999996
|
573 |
+
- type: map_at_1000
|
574 |
+
value: 41.321999999999996
|
575 |
+
- type: map_at_3
|
576 |
+
value: 36.588
|
577 |
+
- type: map_at_5
|
578 |
+
value: 38.538
|
579 |
+
- type: mrr_at_1
|
580 |
+
value: 35.9
|
581 |
+
- type: mrr_at_10
|
582 |
+
value: 45.528
|
583 |
+
- type: mrr_at_100
|
584 |
+
value: 46.343
|
585 |
+
- type: mrr_at_1000
|
586 |
+
value: 46.388
|
587 |
+
- type: mrr_at_3
|
588 |
+
value: 42.862
|
589 |
+
- type: mrr_at_5
|
590 |
+
value: 44.440000000000005
|
591 |
+
- type: ndcg_at_1
|
592 |
+
value: 35.9
|
593 |
+
- type: ndcg_at_10
|
594 |
+
value: 45.987
|
595 |
+
- type: ndcg_at_100
|
596 |
+
value: 51.370000000000005
|
597 |
+
- type: ndcg_at_1000
|
598 |
+
value: 53.400000000000006
|
599 |
+
- type: ndcg_at_3
|
600 |
+
value: 40.841
|
601 |
+
- type: ndcg_at_5
|
602 |
+
value: 43.447
|
603 |
+
- type: precision_at_1
|
604 |
+
value: 35.9
|
605 |
+
- type: precision_at_10
|
606 |
+
value: 8.393
|
607 |
+
- type: precision_at_100
|
608 |
+
value: 1.283
|
609 |
+
- type: precision_at_1000
|
610 |
+
value: 0.166
|
611 |
+
- type: precision_at_3
|
612 |
+
value: 19.538
|
613 |
+
- type: precision_at_5
|
614 |
+
value: 13.975000000000001
|
615 |
+
- type: recall_at_1
|
616 |
+
value: 29.398999999999997
|
617 |
+
- type: recall_at_10
|
618 |
+
value: 58.361
|
619 |
+
- type: recall_at_100
|
620 |
+
value: 81.081
|
621 |
+
- type: recall_at_1000
|
622 |
+
value: 94.004
|
623 |
+
- type: recall_at_3
|
624 |
+
value: 43.657000000000004
|
625 |
+
- type: recall_at_5
|
626 |
+
value: 50.519999999999996
|
627 |
+
- task:
|
628 |
+
type: Retrieval
|
629 |
+
dataset:
|
630 |
+
type: BeIR/cqadupstack
|
631 |
+
name: MTEB CQADupstackProgrammersRetrieval
|
632 |
+
config: default
|
633 |
+
split: test
|
634 |
+
revision: None
|
635 |
+
metrics:
|
636 |
+
- type: map_at_1
|
637 |
+
value: 21.589
|
638 |
+
- type: map_at_10
|
639 |
+
value: 31.608999999999998
|
640 |
+
- type: map_at_100
|
641 |
+
value: 33.128
|
642 |
+
- type: map_at_1000
|
643 |
+
value: 33.247
|
644 |
+
- type: map_at_3
|
645 |
+
value: 28.671999999999997
|
646 |
+
- type: map_at_5
|
647 |
+
value: 30.233999999999998
|
648 |
+
- type: mrr_at_1
|
649 |
+
value: 26.712000000000003
|
650 |
+
- type: mrr_at_10
|
651 |
+
value: 36.713
|
652 |
+
- type: mrr_at_100
|
653 |
+
value: 37.713
|
654 |
+
- type: mrr_at_1000
|
655 |
+
value: 37.771
|
656 |
+
- type: mrr_at_3
|
657 |
+
value: 34.075
|
658 |
+
- type: mrr_at_5
|
659 |
+
value: 35.451
|
660 |
+
- type: ndcg_at_1
|
661 |
+
value: 26.712000000000003
|
662 |
+
- type: ndcg_at_10
|
663 |
+
value: 37.519999999999996
|
664 |
+
- type: ndcg_at_100
|
665 |
+
value: 43.946000000000005
|
666 |
+
- type: ndcg_at_1000
|
667 |
+
value: 46.297
|
668 |
+
- type: ndcg_at_3
|
669 |
+
value: 32.551
|
670 |
+
- type: ndcg_at_5
|
671 |
+
value: 34.660999999999994
|
672 |
+
- type: precision_at_1
|
673 |
+
value: 26.712000000000003
|
674 |
+
- type: precision_at_10
|
675 |
+
value: 7.066
|
676 |
+
- type: precision_at_100
|
677 |
+
value: 1.216
|
678 |
+
- type: precision_at_1000
|
679 |
+
value: 0.157
|
680 |
+
- type: precision_at_3
|
681 |
+
value: 15.906
|
682 |
+
- type: precision_at_5
|
683 |
+
value: 11.437999999999999
|
684 |
+
- type: recall_at_1
|
685 |
+
value: 21.589
|
686 |
+
- type: recall_at_10
|
687 |
+
value: 50.090999999999994
|
688 |
+
- type: recall_at_100
|
689 |
+
value: 77.43900000000001
|
690 |
+
- type: recall_at_1000
|
691 |
+
value: 93.35900000000001
|
692 |
+
- type: recall_at_3
|
693 |
+
value: 36.028999999999996
|
694 |
+
- type: recall_at_5
|
695 |
+
value: 41.698
|
696 |
+
- task:
|
697 |
+
type: Retrieval
|
698 |
+
dataset:
|
699 |
+
type: BeIR/cqadupstack
|
700 |
+
name: MTEB CQADupstackRetrieval
|
701 |
+
config: default
|
702 |
+
split: test
|
703 |
+
revision: None
|
704 |
+
metrics:
|
705 |
+
- type: map_at_1
|
706 |
+
value: 25.121666666666663
|
707 |
+
- type: map_at_10
|
708 |
+
value: 34.46258333333334
|
709 |
+
- type: map_at_100
|
710 |
+
value: 35.710499999999996
|
711 |
+
- type: map_at_1000
|
712 |
+
value: 35.82691666666666
|
713 |
+
- type: map_at_3
|
714 |
+
value: 31.563249999999996
|
715 |
+
- type: map_at_5
|
716 |
+
value: 33.189750000000004
|
717 |
+
- type: mrr_at_1
|
718 |
+
value: 29.66441666666667
|
719 |
+
- type: mrr_at_10
|
720 |
+
value: 38.5455
|
721 |
+
- type: mrr_at_100
|
722 |
+
value: 39.39566666666667
|
723 |
+
- type: mrr_at_1000
|
724 |
+
value: 39.45325
|
725 |
+
- type: mrr_at_3
|
726 |
+
value: 36.003333333333345
|
727 |
+
- type: mrr_at_5
|
728 |
+
value: 37.440916666666666
|
729 |
+
- type: ndcg_at_1
|
730 |
+
value: 29.66441666666667
|
731 |
+
- type: ndcg_at_10
|
732 |
+
value: 39.978416666666675
|
733 |
+
- type: ndcg_at_100
|
734 |
+
value: 45.278666666666666
|
735 |
+
- type: ndcg_at_1000
|
736 |
+
value: 47.52275
|
737 |
+
- type: ndcg_at_3
|
738 |
+
value: 35.00058333333334
|
739 |
+
- type: ndcg_at_5
|
740 |
+
value: 37.34908333333333
|
741 |
+
- type: precision_at_1
|
742 |
+
value: 29.66441666666667
|
743 |
+
- type: precision_at_10
|
744 |
+
value: 7.094500000000001
|
745 |
+
- type: precision_at_100
|
746 |
+
value: 1.1523333333333332
|
747 |
+
- type: precision_at_1000
|
748 |
+
value: 0.15358333333333332
|
749 |
+
- type: precision_at_3
|
750 |
+
value: 16.184166666666663
|
751 |
+
- type: precision_at_5
|
752 |
+
value: 11.6005
|
753 |
+
- type: recall_at_1
|
754 |
+
value: 25.121666666666663
|
755 |
+
- type: recall_at_10
|
756 |
+
value: 52.23975000000001
|
757 |
+
- type: recall_at_100
|
758 |
+
value: 75.48408333333333
|
759 |
+
- type: recall_at_1000
|
760 |
+
value: 90.95316666666668
|
761 |
+
- type: recall_at_3
|
762 |
+
value: 38.38458333333333
|
763 |
+
- type: recall_at_5
|
764 |
+
value: 44.39933333333333
|
765 |
+
- task:
|
766 |
+
type: Retrieval
|
767 |
+
dataset:
|
768 |
+
type: BeIR/cqadupstack
|
769 |
+
name: MTEB CQADupstackStatsRetrieval
|
770 |
+
config: default
|
771 |
+
split: test
|
772 |
+
revision: None
|
773 |
+
metrics:
|
774 |
+
- type: map_at_1
|
775 |
+
value: 23.569000000000003
|
776 |
+
- type: map_at_10
|
777 |
+
value: 30.389
|
778 |
+
- type: map_at_100
|
779 |
+
value: 31.396
|
780 |
+
- type: map_at_1000
|
781 |
+
value: 31.493
|
782 |
+
- type: map_at_3
|
783 |
+
value: 28.276
|
784 |
+
- type: map_at_5
|
785 |
+
value: 29.459000000000003
|
786 |
+
- type: mrr_at_1
|
787 |
+
value: 26.534000000000002
|
788 |
+
- type: mrr_at_10
|
789 |
+
value: 33.217999999999996
|
790 |
+
- type: mrr_at_100
|
791 |
+
value: 34.054
|
792 |
+
- type: mrr_at_1000
|
793 |
+
value: 34.12
|
794 |
+
- type: mrr_at_3
|
795 |
+
value: 31.058000000000003
|
796 |
+
- type: mrr_at_5
|
797 |
+
value: 32.330999999999996
|
798 |
+
- type: ndcg_at_1
|
799 |
+
value: 26.534000000000002
|
800 |
+
- type: ndcg_at_10
|
801 |
+
value: 34.608
|
802 |
+
- type: ndcg_at_100
|
803 |
+
value: 39.391999999999996
|
804 |
+
- type: ndcg_at_1000
|
805 |
+
value: 41.837999999999994
|
806 |
+
- type: ndcg_at_3
|
807 |
+
value: 30.564999999999998
|
808 |
+
- type: ndcg_at_5
|
809 |
+
value: 32.509
|
810 |
+
- type: precision_at_1
|
811 |
+
value: 26.534000000000002
|
812 |
+
- type: precision_at_10
|
813 |
+
value: 5.414
|
814 |
+
- type: precision_at_100
|
815 |
+
value: 0.847
|
816 |
+
- type: precision_at_1000
|
817 |
+
value: 0.11399999999999999
|
818 |
+
- type: precision_at_3
|
819 |
+
value: 12.986
|
820 |
+
- type: precision_at_5
|
821 |
+
value: 9.202
|
822 |
+
- type: recall_at_1
|
823 |
+
value: 23.569000000000003
|
824 |
+
- type: recall_at_10
|
825 |
+
value: 44.896
|
826 |
+
- type: recall_at_100
|
827 |
+
value: 66.476
|
828 |
+
- type: recall_at_1000
|
829 |
+
value: 84.548
|
830 |
+
- type: recall_at_3
|
831 |
+
value: 33.79
|
832 |
+
- type: recall_at_5
|
833 |
+
value: 38.512
|
834 |
+
- task:
|
835 |
+
type: Retrieval
|
836 |
+
dataset:
|
837 |
+
type: BeIR/cqadupstack
|
838 |
+
name: MTEB CQADupstackTexRetrieval
|
839 |
+
config: default
|
840 |
+
split: test
|
841 |
+
revision: None
|
842 |
+
metrics:
|
843 |
+
- type: map_at_1
|
844 |
+
value: 16.36
|
845 |
+
- type: map_at_10
|
846 |
+
value: 23.57
|
847 |
+
- type: map_at_100
|
848 |
+
value: 24.698999999999998
|
849 |
+
- type: map_at_1000
|
850 |
+
value: 24.834999999999997
|
851 |
+
- type: map_at_3
|
852 |
+
value: 21.093
|
853 |
+
- type: map_at_5
|
854 |
+
value: 22.418
|
855 |
+
- type: mrr_at_1
|
856 |
+
value: 19.718
|
857 |
+
- type: mrr_at_10
|
858 |
+
value: 27.139999999999997
|
859 |
+
- type: mrr_at_100
|
860 |
+
value: 28.097
|
861 |
+
- type: mrr_at_1000
|
862 |
+
value: 28.177999999999997
|
863 |
+
- type: mrr_at_3
|
864 |
+
value: 24.805
|
865 |
+
- type: mrr_at_5
|
866 |
+
value: 26.121
|
867 |
+
- type: ndcg_at_1
|
868 |
+
value: 19.718
|
869 |
+
- type: ndcg_at_10
|
870 |
+
value: 28.238999999999997
|
871 |
+
- type: ndcg_at_100
|
872 |
+
value: 33.663
|
873 |
+
- type: ndcg_at_1000
|
874 |
+
value: 36.763
|
875 |
+
- type: ndcg_at_3
|
876 |
+
value: 23.747
|
877 |
+
- type: ndcg_at_5
|
878 |
+
value: 25.796000000000003
|
879 |
+
- type: precision_at_1
|
880 |
+
value: 19.718
|
881 |
+
- type: precision_at_10
|
882 |
+
value: 5.282
|
883 |
+
- type: precision_at_100
|
884 |
+
value: 0.9390000000000001
|
885 |
+
- type: precision_at_1000
|
886 |
+
value: 0.13899999999999998
|
887 |
+
- type: precision_at_3
|
888 |
+
value: 11.264000000000001
|
889 |
+
- type: precision_at_5
|
890 |
+
value: 8.341
|
891 |
+
- type: recall_at_1
|
892 |
+
value: 16.36
|
893 |
+
- type: recall_at_10
|
894 |
+
value: 38.669
|
895 |
+
- type: recall_at_100
|
896 |
+
value: 63.184
|
897 |
+
- type: recall_at_1000
|
898 |
+
value: 85.33800000000001
|
899 |
+
- type: recall_at_3
|
900 |
+
value: 26.214
|
901 |
+
- type: recall_at_5
|
902 |
+
value: 31.423000000000002
|
903 |
+
- task:
|
904 |
+
type: Retrieval
|
905 |
+
dataset:
|
906 |
+
type: BeIR/cqadupstack
|
907 |
+
name: MTEB CQADupstackUnixRetrieval
|
908 |
+
config: default
|
909 |
+
split: test
|
910 |
+
revision: None
|
911 |
+
metrics:
|
912 |
+
- type: map_at_1
|
913 |
+
value: 25.618999999999996
|
914 |
+
- type: map_at_10
|
915 |
+
value: 34.361999999999995
|
916 |
+
- type: map_at_100
|
917 |
+
value: 35.534
|
918 |
+
- type: map_at_1000
|
919 |
+
value: 35.634
|
920 |
+
- type: map_at_3
|
921 |
+
value: 31.402
|
922 |
+
- type: map_at_5
|
923 |
+
value: 32.815
|
924 |
+
- type: mrr_at_1
|
925 |
+
value: 30.037000000000003
|
926 |
+
- type: mrr_at_10
|
927 |
+
value: 38.284
|
928 |
+
- type: mrr_at_100
|
929 |
+
value: 39.141999999999996
|
930 |
+
- type: mrr_at_1000
|
931 |
+
value: 39.2
|
932 |
+
- type: mrr_at_3
|
933 |
+
value: 35.603
|
934 |
+
- type: mrr_at_5
|
935 |
+
value: 36.867
|
936 |
+
- type: ndcg_at_1
|
937 |
+
value: 30.037000000000003
|
938 |
+
- type: ndcg_at_10
|
939 |
+
value: 39.87
|
940 |
+
- type: ndcg_at_100
|
941 |
+
value: 45.243
|
942 |
+
- type: ndcg_at_1000
|
943 |
+
value: 47.507
|
944 |
+
- type: ndcg_at_3
|
945 |
+
value: 34.371
|
946 |
+
- type: ndcg_at_5
|
947 |
+
value: 36.521
|
948 |
+
- type: precision_at_1
|
949 |
+
value: 30.037000000000003
|
950 |
+
- type: precision_at_10
|
951 |
+
value: 6.819
|
952 |
+
- type: precision_at_100
|
953 |
+
value: 1.0699999999999998
|
954 |
+
- type: precision_at_1000
|
955 |
+
value: 0.13699999999999998
|
956 |
+
- type: precision_at_3
|
957 |
+
value: 15.392
|
958 |
+
- type: precision_at_5
|
959 |
+
value: 10.821
|
960 |
+
- type: recall_at_1
|
961 |
+
value: 25.618999999999996
|
962 |
+
- type: recall_at_10
|
963 |
+
value: 52.869
|
964 |
+
- type: recall_at_100
|
965 |
+
value: 76.395
|
966 |
+
- type: recall_at_1000
|
967 |
+
value: 92.19500000000001
|
968 |
+
- type: recall_at_3
|
969 |
+
value: 37.943
|
970 |
+
- type: recall_at_5
|
971 |
+
value: 43.342999999999996
|
972 |
+
- task:
|
973 |
+
type: Retrieval
|
974 |
+
dataset:
|
975 |
+
type: BeIR/cqadupstack
|
976 |
+
name: MTEB CQADupstackWebmastersRetrieval
|
977 |
+
config: default
|
978 |
+
split: test
|
979 |
+
revision: None
|
980 |
+
metrics:
|
981 |
+
- type: map_at_1
|
982 |
+
value: 23.283
|
983 |
+
- type: map_at_10
|
984 |
+
value: 32.155
|
985 |
+
- type: map_at_100
|
986 |
+
value: 33.724
|
987 |
+
- type: map_at_1000
|
988 |
+
value: 33.939
|
989 |
+
- type: map_at_3
|
990 |
+
value: 29.018
|
991 |
+
- type: map_at_5
|
992 |
+
value: 30.864000000000004
|
993 |
+
- type: mrr_at_1
|
994 |
+
value: 28.063
|
995 |
+
- type: mrr_at_10
|
996 |
+
value: 36.632
|
997 |
+
- type: mrr_at_100
|
998 |
+
value: 37.606
|
999 |
+
- type: mrr_at_1000
|
1000 |
+
value: 37.671
|
1001 |
+
- type: mrr_at_3
|
1002 |
+
value: 33.992
|
1003 |
+
- type: mrr_at_5
|
1004 |
+
value: 35.613
|
1005 |
+
- type: ndcg_at_1
|
1006 |
+
value: 28.063
|
1007 |
+
- type: ndcg_at_10
|
1008 |
+
value: 38.024
|
1009 |
+
- type: ndcg_at_100
|
1010 |
+
value: 44.292
|
1011 |
+
- type: ndcg_at_1000
|
1012 |
+
value: 46.818
|
1013 |
+
- type: ndcg_at_3
|
1014 |
+
value: 32.965
|
1015 |
+
- type: ndcg_at_5
|
1016 |
+
value: 35.562
|
1017 |
+
- type: precision_at_1
|
1018 |
+
value: 28.063
|
1019 |
+
- type: precision_at_10
|
1020 |
+
value: 7.352
|
1021 |
+
- type: precision_at_100
|
1022 |
+
value: 1.514
|
1023 |
+
- type: precision_at_1000
|
1024 |
+
value: 0.23800000000000002
|
1025 |
+
- type: precision_at_3
|
1026 |
+
value: 15.481
|
1027 |
+
- type: precision_at_5
|
1028 |
+
value: 11.542
|
1029 |
+
- type: recall_at_1
|
1030 |
+
value: 23.283
|
1031 |
+
- type: recall_at_10
|
1032 |
+
value: 49.756
|
1033 |
+
- type: recall_at_100
|
1034 |
+
value: 78.05
|
1035 |
+
- type: recall_at_1000
|
1036 |
+
value: 93.854
|
1037 |
+
- type: recall_at_3
|
1038 |
+
value: 35.408
|
1039 |
+
- type: recall_at_5
|
1040 |
+
value: 42.187000000000005
|
1041 |
+
- task:
|
1042 |
+
type: Retrieval
|
1043 |
+
dataset:
|
1044 |
+
type: BeIR/cqadupstack
|
1045 |
+
name: MTEB CQADupstackWordpressRetrieval
|
1046 |
+
config: default
|
1047 |
+
split: test
|
1048 |
+
revision: None
|
1049 |
+
metrics:
|
1050 |
+
- type: map_at_1
|
1051 |
+
value: 19.201999999999998
|
1052 |
+
- type: map_at_10
|
1053 |
+
value: 26.826
|
1054 |
+
- type: map_at_100
|
1055 |
+
value: 27.961000000000002
|
1056 |
+
- type: map_at_1000
|
1057 |
+
value: 28.066999999999997
|
1058 |
+
- type: map_at_3
|
1059 |
+
value: 24.237000000000002
|
1060 |
+
- type: map_at_5
|
1061 |
+
value: 25.811
|
1062 |
+
- type: mrr_at_1
|
1063 |
+
value: 20.887
|
1064 |
+
- type: mrr_at_10
|
1065 |
+
value: 28.660000000000004
|
1066 |
+
- type: mrr_at_100
|
1067 |
+
value: 29.660999999999998
|
1068 |
+
- type: mrr_at_1000
|
1069 |
+
value: 29.731
|
1070 |
+
- type: mrr_at_3
|
1071 |
+
value: 26.155
|
1072 |
+
- type: mrr_at_5
|
1073 |
+
value: 27.68
|
1074 |
+
- type: ndcg_at_1
|
1075 |
+
value: 20.887
|
1076 |
+
- type: ndcg_at_10
|
1077 |
+
value: 31.523
|
1078 |
+
- type: ndcg_at_100
|
1079 |
+
value: 37.055
|
1080 |
+
- type: ndcg_at_1000
|
1081 |
+
value: 39.579
|
1082 |
+
- type: ndcg_at_3
|
1083 |
+
value: 26.529000000000003
|
1084 |
+
- type: ndcg_at_5
|
1085 |
+
value: 29.137
|
1086 |
+
- type: precision_at_1
|
1087 |
+
value: 20.887
|
1088 |
+
- type: precision_at_10
|
1089 |
+
value: 5.065
|
1090 |
+
- type: precision_at_100
|
1091 |
+
value: 0.856
|
1092 |
+
- type: precision_at_1000
|
1093 |
+
value: 0.11900000000000001
|
1094 |
+
- type: precision_at_3
|
1095 |
+
value: 11.399
|
1096 |
+
- type: precision_at_5
|
1097 |
+
value: 8.392
|
1098 |
+
- type: recall_at_1
|
1099 |
+
value: 19.201999999999998
|
1100 |
+
- type: recall_at_10
|
1101 |
+
value: 44.285000000000004
|
1102 |
+
- type: recall_at_100
|
1103 |
+
value: 69.768
|
1104 |
+
- type: recall_at_1000
|
1105 |
+
value: 88.302
|
1106 |
+
- type: recall_at_3
|
1107 |
+
value: 30.804
|
1108 |
+
- type: recall_at_5
|
1109 |
+
value: 37.039
|
1110 |
+
- task:
|
1111 |
+
type: Retrieval
|
1112 |
+
dataset:
|
1113 |
+
type: climate-fever
|
1114 |
+
name: MTEB ClimateFEVER
|
1115 |
+
config: default
|
1116 |
+
split: test
|
1117 |
+
revision: None
|
1118 |
+
metrics:
|
1119 |
+
- type: map_at_1
|
1120 |
+
value: 11.244
|
1121 |
+
- type: map_at_10
|
1122 |
+
value: 18.956
|
1123 |
+
- type: map_at_100
|
1124 |
+
value: 20.674
|
1125 |
+
- type: map_at_1000
|
1126 |
+
value: 20.863
|
1127 |
+
- type: map_at_3
|
1128 |
+
value: 15.923000000000002
|
1129 |
+
- type: map_at_5
|
1130 |
+
value: 17.518
|
1131 |
+
- type: mrr_at_1
|
1132 |
+
value: 25.080999999999996
|
1133 |
+
- type: mrr_at_10
|
1134 |
+
value: 35.94
|
1135 |
+
- type: mrr_at_100
|
1136 |
+
value: 36.969
|
1137 |
+
- type: mrr_at_1000
|
1138 |
+
value: 37.013
|
1139 |
+
- type: mrr_at_3
|
1140 |
+
value: 32.617000000000004
|
1141 |
+
- type: mrr_at_5
|
1142 |
+
value: 34.682
|
1143 |
+
- type: ndcg_at_1
|
1144 |
+
value: 25.080999999999996
|
1145 |
+
- type: ndcg_at_10
|
1146 |
+
value: 26.539
|
1147 |
+
- type: ndcg_at_100
|
1148 |
+
value: 33.601
|
1149 |
+
- type: ndcg_at_1000
|
1150 |
+
value: 37.203
|
1151 |
+
- type: ndcg_at_3
|
1152 |
+
value: 21.695999999999998
|
1153 |
+
- type: ndcg_at_5
|
1154 |
+
value: 23.567
|
1155 |
+
- type: precision_at_1
|
1156 |
+
value: 25.080999999999996
|
1157 |
+
- type: precision_at_10
|
1158 |
+
value: 8.143
|
1159 |
+
- type: precision_at_100
|
1160 |
+
value: 1.5650000000000002
|
1161 |
+
- type: precision_at_1000
|
1162 |
+
value: 0.22300000000000003
|
1163 |
+
- type: precision_at_3
|
1164 |
+
value: 15.983
|
1165 |
+
- type: precision_at_5
|
1166 |
+
value: 12.417
|
1167 |
+
- type: recall_at_1
|
1168 |
+
value: 11.244
|
1169 |
+
- type: recall_at_10
|
1170 |
+
value: 31.457
|
1171 |
+
- type: recall_at_100
|
1172 |
+
value: 55.92
|
1173 |
+
- type: recall_at_1000
|
1174 |
+
value: 76.372
|
1175 |
+
- type: recall_at_3
|
1176 |
+
value: 19.784
|
1177 |
+
- type: recall_at_5
|
1178 |
+
value: 24.857000000000003
|
1179 |
+
- task:
|
1180 |
+
type: Retrieval
|
1181 |
+
dataset:
|
1182 |
+
type: dbpedia-entity
|
1183 |
+
name: MTEB DBPedia
|
1184 |
+
config: default
|
1185 |
+
split: test
|
1186 |
+
revision: None
|
1187 |
+
metrics:
|
1188 |
+
- type: map_at_1
|
1189 |
+
value: 8.595
|
1190 |
+
- type: map_at_10
|
1191 |
+
value: 18.75
|
1192 |
+
- type: map_at_100
|
1193 |
+
value: 26.354
|
1194 |
+
- type: map_at_1000
|
1195 |
+
value: 27.912
|
1196 |
+
- type: map_at_3
|
1197 |
+
value: 13.794
|
1198 |
+
- type: map_at_5
|
1199 |
+
value: 16.021
|
1200 |
+
- type: mrr_at_1
|
1201 |
+
value: 65.75
|
1202 |
+
- type: mrr_at_10
|
1203 |
+
value: 73.837
|
1204 |
+
- type: mrr_at_100
|
1205 |
+
value: 74.22800000000001
|
1206 |
+
- type: mrr_at_1000
|
1207 |
+
value: 74.234
|
1208 |
+
- type: mrr_at_3
|
1209 |
+
value: 72.5
|
1210 |
+
- type: mrr_at_5
|
1211 |
+
value: 73.387
|
1212 |
+
- type: ndcg_at_1
|
1213 |
+
value: 52.625
|
1214 |
+
- type: ndcg_at_10
|
1215 |
+
value: 39.101
|
1216 |
+
- type: ndcg_at_100
|
1217 |
+
value: 43.836000000000006
|
1218 |
+
- type: ndcg_at_1000
|
1219 |
+
value: 51.086
|
1220 |
+
- type: ndcg_at_3
|
1221 |
+
value: 44.229
|
1222 |
+
- type: ndcg_at_5
|
1223 |
+
value: 41.555
|
1224 |
+
- type: precision_at_1
|
1225 |
+
value: 65.75
|
1226 |
+
- type: precision_at_10
|
1227 |
+
value: 30.45
|
1228 |
+
- type: precision_at_100
|
1229 |
+
value: 9.81
|
1230 |
+
- type: precision_at_1000
|
1231 |
+
value: 2.045
|
1232 |
+
- type: precision_at_3
|
1233 |
+
value: 48.667
|
1234 |
+
- type: precision_at_5
|
1235 |
+
value: 40.8
|
1236 |
+
- type: recall_at_1
|
1237 |
+
value: 8.595
|
1238 |
+
- type: recall_at_10
|
1239 |
+
value: 24.201
|
1240 |
+
- type: recall_at_100
|
1241 |
+
value: 50.096
|
1242 |
+
- type: recall_at_1000
|
1243 |
+
value: 72.677
|
1244 |
+
- type: recall_at_3
|
1245 |
+
value: 15.212
|
1246 |
+
- type: recall_at_5
|
1247 |
+
value: 18.745
|
1248 |
+
- task:
|
1249 |
+
type: Classification
|
1250 |
+
dataset:
|
1251 |
+
type: mteb/emotion
|
1252 |
+
name: MTEB EmotionClassification
|
1253 |
+
config: default
|
1254 |
+
split: test
|
1255 |
+
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
|
1256 |
+
metrics:
|
1257 |
+
- type: accuracy
|
1258 |
+
value: 46.565
|
1259 |
+
- type: f1
|
1260 |
+
value: 41.49914329345582
|
1261 |
+
- task:
|
1262 |
+
type: Retrieval
|
1263 |
+
dataset:
|
1264 |
+
type: fever
|
1265 |
+
name: MTEB FEVER
|
1266 |
+
config: default
|
1267 |
+
split: test
|
1268 |
+
revision: None
|
1269 |
+
metrics:
|
1270 |
+
- type: map_at_1
|
1271 |
+
value: 66.60000000000001
|
1272 |
+
- type: map_at_10
|
1273 |
+
value: 76.838
|
1274 |
+
- type: map_at_100
|
1275 |
+
value: 77.076
|
1276 |
+
- type: map_at_1000
|
1277 |
+
value: 77.09
|
1278 |
+
- type: map_at_3
|
1279 |
+
value: 75.545
|
1280 |
+
- type: map_at_5
|
1281 |
+
value: 76.39
|
1282 |
+
- type: mrr_at_1
|
1283 |
+
value: 71.707
|
1284 |
+
- type: mrr_at_10
|
1285 |
+
value: 81.514
|
1286 |
+
- type: mrr_at_100
|
1287 |
+
value: 81.64099999999999
|
1288 |
+
- type: mrr_at_1000
|
1289 |
+
value: 81.645
|
1290 |
+
- type: mrr_at_3
|
1291 |
+
value: 80.428
|
1292 |
+
- type: mrr_at_5
|
1293 |
+
value: 81.159
|
1294 |
+
- type: ndcg_at_1
|
1295 |
+
value: 71.707
|
1296 |
+
- type: ndcg_at_10
|
1297 |
+
value: 81.545
|
1298 |
+
- type: ndcg_at_100
|
1299 |
+
value: 82.477
|
1300 |
+
- type: ndcg_at_1000
|
1301 |
+
value: 82.73899999999999
|
1302 |
+
- type: ndcg_at_3
|
1303 |
+
value: 79.292
|
1304 |
+
- type: ndcg_at_5
|
1305 |
+
value: 80.599
|
1306 |
+
- type: precision_at_1
|
1307 |
+
value: 71.707
|
1308 |
+
- type: precision_at_10
|
1309 |
+
value: 10.035
|
1310 |
+
- type: precision_at_100
|
1311 |
+
value: 1.068
|
1312 |
+
- type: precision_at_1000
|
1313 |
+
value: 0.11100000000000002
|
1314 |
+
- type: precision_at_3
|
1315 |
+
value: 30.918
|
1316 |
+
- type: precision_at_5
|
1317 |
+
value: 19.328
|
1318 |
+
- type: recall_at_1
|
1319 |
+
value: 66.60000000000001
|
1320 |
+
- type: recall_at_10
|
1321 |
+
value: 91.353
|
1322 |
+
- type: recall_at_100
|
1323 |
+
value: 95.21
|
1324 |
+
- type: recall_at_1000
|
1325 |
+
value: 96.89999999999999
|
1326 |
+
- type: recall_at_3
|
1327 |
+
value: 85.188
|
1328 |
+
- type: recall_at_5
|
1329 |
+
value: 88.52
|
1330 |
+
- task:
|
1331 |
+
type: Retrieval
|
1332 |
+
dataset:
|
1333 |
+
type: fiqa
|
1334 |
+
name: MTEB FiQA2018
|
1335 |
+
config: default
|
1336 |
+
split: test
|
1337 |
+
revision: None
|
1338 |
+
metrics:
|
1339 |
+
- type: map_at_1
|
1340 |
+
value: 19.338
|
1341 |
+
- type: map_at_10
|
1342 |
+
value: 31.752000000000002
|
1343 |
+
- type: map_at_100
|
1344 |
+
value: 33.516
|
1345 |
+
- type: map_at_1000
|
1346 |
+
value: 33.694
|
1347 |
+
- type: map_at_3
|
1348 |
+
value: 27.716
|
1349 |
+
- type: map_at_5
|
1350 |
+
value: 29.67
|
1351 |
+
- type: mrr_at_1
|
1352 |
+
value: 38.117000000000004
|
1353 |
+
- type: mrr_at_10
|
1354 |
+
value: 47.323
|
1355 |
+
- type: mrr_at_100
|
1356 |
+
value: 48.13
|
1357 |
+
- type: mrr_at_1000
|
1358 |
+
value: 48.161
|
1359 |
+
- type: mrr_at_3
|
1360 |
+
value: 45.062000000000005
|
1361 |
+
- type: mrr_at_5
|
1362 |
+
value: 46.358
|
1363 |
+
- type: ndcg_at_1
|
1364 |
+
value: 38.117000000000004
|
1365 |
+
- type: ndcg_at_10
|
1366 |
+
value: 39.353
|
1367 |
+
- type: ndcg_at_100
|
1368 |
+
value: 46.044000000000004
|
1369 |
+
- type: ndcg_at_1000
|
1370 |
+
value: 49.083
|
1371 |
+
- type: ndcg_at_3
|
1372 |
+
value: 35.891
|
1373 |
+
- type: ndcg_at_5
|
1374 |
+
value: 36.661
|
1375 |
+
- type: precision_at_1
|
1376 |
+
value: 38.117000000000004
|
1377 |
+
- type: precision_at_10
|
1378 |
+
value: 11.187999999999999
|
1379 |
+
- type: precision_at_100
|
1380 |
+
value: 1.802
|
1381 |
+
- type: precision_at_1000
|
1382 |
+
value: 0.234
|
1383 |
+
- type: precision_at_3
|
1384 |
+
value: 24.126
|
1385 |
+
- type: precision_at_5
|
1386 |
+
value: 17.562
|
1387 |
+
- type: recall_at_1
|
1388 |
+
value: 19.338
|
1389 |
+
- type: recall_at_10
|
1390 |
+
value: 45.735
|
1391 |
+
- type: recall_at_100
|
1392 |
+
value: 71.281
|
1393 |
+
- type: recall_at_1000
|
1394 |
+
value: 89.537
|
1395 |
+
- type: recall_at_3
|
1396 |
+
value: 32.525
|
1397 |
+
- type: recall_at_5
|
1398 |
+
value: 37.671
|
1399 |
+
- task:
|
1400 |
+
type: Retrieval
|
1401 |
+
dataset:
|
1402 |
+
type: hotpotqa
|
1403 |
+
name: MTEB HotpotQA
|
1404 |
+
config: default
|
1405 |
+
split: test
|
1406 |
+
revision: None
|
1407 |
+
metrics:
|
1408 |
+
- type: map_at_1
|
1409 |
+
value: 36.995
|
1410 |
+
- type: map_at_10
|
1411 |
+
value: 55.032000000000004
|
1412 |
+
- type: map_at_100
|
1413 |
+
value: 55.86
|
1414 |
+
- type: map_at_1000
|
1415 |
+
value: 55.932
|
1416 |
+
- type: map_at_3
|
1417 |
+
value: 52.125
|
1418 |
+
- type: map_at_5
|
1419 |
+
value: 53.884
|
1420 |
+
- type: mrr_at_1
|
1421 |
+
value: 73.991
|
1422 |
+
- type: mrr_at_10
|
1423 |
+
value: 80.096
|
1424 |
+
- type: mrr_at_100
|
1425 |
+
value: 80.32000000000001
|
1426 |
+
- type: mrr_at_1000
|
1427 |
+
value: 80.331
|
1428 |
+
- type: mrr_at_3
|
1429 |
+
value: 79.037
|
1430 |
+
- type: mrr_at_5
|
1431 |
+
value: 79.719
|
1432 |
+
- type: ndcg_at_1
|
1433 |
+
value: 73.991
|
1434 |
+
- type: ndcg_at_10
|
1435 |
+
value: 63.786
|
1436 |
+
- type: ndcg_at_100
|
1437 |
+
value: 66.78
|
1438 |
+
- type: ndcg_at_1000
|
1439 |
+
value: 68.255
|
1440 |
+
- type: ndcg_at_3
|
1441 |
+
value: 59.501000000000005
|
1442 |
+
- type: ndcg_at_5
|
1443 |
+
value: 61.82299999999999
|
1444 |
+
- type: precision_at_1
|
1445 |
+
value: 73.991
|
1446 |
+
- type: precision_at_10
|
1447 |
+
value: 13.157
|
1448 |
+
- type: precision_at_100
|
1449 |
+
value: 1.552
|
1450 |
+
- type: precision_at_1000
|
1451 |
+
value: 0.17500000000000002
|
1452 |
+
- type: precision_at_3
|
1453 |
+
value: 37.519999999999996
|
1454 |
+
- type: precision_at_5
|
1455 |
+
value: 24.351
|
1456 |
+
- type: recall_at_1
|
1457 |
+
value: 36.995
|
1458 |
+
- type: recall_at_10
|
1459 |
+
value: 65.78699999999999
|
1460 |
+
- type: recall_at_100
|
1461 |
+
value: 77.583
|
1462 |
+
- type: recall_at_1000
|
1463 |
+
value: 87.421
|
1464 |
+
- type: recall_at_3
|
1465 |
+
value: 56.279999999999994
|
1466 |
+
- type: recall_at_5
|
1467 |
+
value: 60.878
|
1468 |
+
- task:
|
1469 |
+
type: Classification
|
1470 |
+
dataset:
|
1471 |
+
type: mteb/imdb
|
1472 |
+
name: MTEB ImdbClassification
|
1473 |
+
config: default
|
1474 |
+
split: test
|
1475 |
+
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
|
1476 |
+
metrics:
|
1477 |
+
- type: accuracy
|
1478 |
+
value: 86.80239999999999
|
1479 |
+
- type: ap
|
1480 |
+
value: 81.97305141128378
|
1481 |
+
- type: f1
|
1482 |
+
value: 86.76976305549273
|
1483 |
+
- task:
|
1484 |
+
type: Retrieval
|
1485 |
+
dataset:
|
1486 |
+
type: msmarco
|
1487 |
+
name: MTEB MSMARCO
|
1488 |
+
config: default
|
1489 |
+
split: dev
|
1490 |
+
revision: None
|
1491 |
+
metrics:
|
1492 |
+
- type: map_at_1
|
1493 |
+
value: 21.166
|
1494 |
+
- type: map_at_10
|
1495 |
+
value: 33.396
|
1496 |
+
- type: map_at_100
|
1497 |
+
value: 34.588
|
1498 |
+
- type: map_at_1000
|
1499 |
+
value: 34.637
|
1500 |
+
- type: map_at_3
|
1501 |
+
value: 29.509999999999998
|
1502 |
+
- type: map_at_5
|
1503 |
+
value: 31.719
|
1504 |
+
- type: mrr_at_1
|
1505 |
+
value: 21.762
|
1506 |
+
- type: mrr_at_10
|
1507 |
+
value: 33.969
|
1508 |
+
- type: mrr_at_100
|
1509 |
+
value: 35.099000000000004
|
1510 |
+
- type: mrr_at_1000
|
1511 |
+
value: 35.141
|
1512 |
+
- type: mrr_at_3
|
1513 |
+
value: 30.148000000000003
|
1514 |
+
- type: mrr_at_5
|
1515 |
+
value: 32.324000000000005
|
1516 |
+
- type: ndcg_at_1
|
1517 |
+
value: 21.776999999999997
|
1518 |
+
- type: ndcg_at_10
|
1519 |
+
value: 40.306999999999995
|
1520 |
+
- type: ndcg_at_100
|
1521 |
+
value: 46.068
|
1522 |
+
- type: ndcg_at_1000
|
1523 |
+
value: 47.3
|
1524 |
+
- type: ndcg_at_3
|
1525 |
+
value: 32.416
|
1526 |
+
- type: ndcg_at_5
|
1527 |
+
value: 36.345
|
1528 |
+
- type: precision_at_1
|
1529 |
+
value: 21.776999999999997
|
1530 |
+
- type: precision_at_10
|
1531 |
+
value: 6.433
|
1532 |
+
- type: precision_at_100
|
1533 |
+
value: 0.932
|
1534 |
+
- type: precision_at_1000
|
1535 |
+
value: 0.104
|
1536 |
+
- type: precision_at_3
|
1537 |
+
value: 13.897
|
1538 |
+
- type: precision_at_5
|
1539 |
+
value: 10.324
|
1540 |
+
- type: recall_at_1
|
1541 |
+
value: 21.166
|
1542 |
+
- type: recall_at_10
|
1543 |
+
value: 61.587
|
1544 |
+
- type: recall_at_100
|
1545 |
+
value: 88.251
|
1546 |
+
- type: recall_at_1000
|
1547 |
+
value: 97.727
|
1548 |
+
- type: recall_at_3
|
1549 |
+
value: 40.196
|
1550 |
+
- type: recall_at_5
|
1551 |
+
value: 49.611
|
1552 |
+
- task:
|
1553 |
+
type: Classification
|
1554 |
+
dataset:
|
1555 |
+
type: mteb/mtop_domain
|
1556 |
+
name: MTEB MTOPDomainClassification (en)
|
1557 |
+
config: en
|
1558 |
+
split: test
|
1559 |
+
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
|
1560 |
+
metrics:
|
1561 |
+
- type: accuracy
|
1562 |
+
value: 93.04605563155496
|
1563 |
+
- type: f1
|
1564 |
+
value: 92.78007303978372
|
1565 |
+
- task:
|
1566 |
+
type: Classification
|
1567 |
+
dataset:
|
1568 |
+
type: mteb/mtop_intent
|
1569 |
+
name: MTEB MTOPIntentClassification (en)
|
1570 |
+
config: en
|
1571 |
+
split: test
|
1572 |
+
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
|
1573 |
+
metrics:
|
1574 |
+
- type: accuracy
|
1575 |
+
value: 69.65116279069767
|
1576 |
+
- type: f1
|
1577 |
+
value: 52.75775172527262
|
1578 |
+
- task:
|
1579 |
+
type: Classification
|
1580 |
+
dataset:
|
1581 |
+
type: mteb/amazon_massive_intent
|
1582 |
+
name: MTEB MassiveIntentClassification (en)
|
1583 |
+
config: en
|
1584 |
+
split: test
|
1585 |
+
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
|
1586 |
+
metrics:
|
1587 |
+
- type: accuracy
|
1588 |
+
value: 70.34633490248822
|
1589 |
+
- type: f1
|
1590 |
+
value: 68.15345065392562
|
1591 |
+
- task:
|
1592 |
+
type: Classification
|
1593 |
+
dataset:
|
1594 |
+
type: mteb/amazon_massive_scenario
|
1595 |
+
name: MTEB MassiveScenarioClassification (en)
|
1596 |
+
config: en
|
1597 |
+
split: test
|
1598 |
+
revision: 7d571f92784cd94a019292a1f45445077d0ef634
|
1599 |
+
metrics:
|
1600 |
+
- type: accuracy
|
1601 |
+
value: 75.63887020847343
|
1602 |
+
- type: f1
|
1603 |
+
value: 76.08074680233685
|
1604 |
+
- task:
|
1605 |
+
type: Clustering
|
1606 |
+
dataset:
|
1607 |
+
type: mteb/medrxiv-clustering-p2p
|
1608 |
+
name: MTEB MedrxivClusteringP2P
|
1609 |
+
config: default
|
1610 |
+
split: test
|
1611 |
+
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
|
1612 |
+
metrics:
|
1613 |
+
- type: v_measure
|
1614 |
+
value: 33.77933406071333
|
1615 |
+
- task:
|
1616 |
+
type: Clustering
|
1617 |
+
dataset:
|
1618 |
+
type: mteb/medrxiv-clustering-s2s
|
1619 |
+
name: MTEB MedrxivClusteringS2S
|
1620 |
+
config: default
|
1621 |
+
split: test
|
1622 |
+
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
|
1623 |
+
metrics:
|
1624 |
+
- type: v_measure
|
1625 |
+
value: 32.06504927238196
|
1626 |
+
- task:
|
1627 |
+
type: Reranking
|
1628 |
+
dataset:
|
1629 |
+
type: mteb/mind_small
|
1630 |
+
name: MTEB MindSmallReranking
|
1631 |
+
config: default
|
1632 |
+
split: test
|
1633 |
+
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
|
1634 |
+
metrics:
|
1635 |
+
- type: map
|
1636 |
+
value: 32.20682480490871
|
1637 |
+
- type: mrr
|
1638 |
+
value: 33.41462721527003
|
1639 |
+
- task:
|
1640 |
+
type: Retrieval
|
1641 |
+
dataset:
|
1642 |
+
type: nfcorpus
|
1643 |
+
name: MTEB NFCorpus
|
1644 |
+
config: default
|
1645 |
+
split: test
|
1646 |
+
revision: None
|
1647 |
+
metrics:
|
1648 |
+
- type: map_at_1
|
1649 |
+
value: 5.548
|
1650 |
+
- type: map_at_10
|
1651 |
+
value: 13.086999999999998
|
1652 |
+
- type: map_at_100
|
1653 |
+
value: 16.698
|
1654 |
+
- type: map_at_1000
|
1655 |
+
value: 18.151999999999997
|
1656 |
+
- type: map_at_3
|
1657 |
+
value: 9.576
|
1658 |
+
- type: map_at_5
|
1659 |
+
value: 11.175
|
1660 |
+
- type: mrr_at_1
|
1661 |
+
value: 44.272
|
1662 |
+
- type: mrr_at_10
|
1663 |
+
value: 53.635999999999996
|
1664 |
+
- type: mrr_at_100
|
1665 |
+
value: 54.228
|
1666 |
+
- type: mrr_at_1000
|
1667 |
+
value: 54.26499999999999
|
1668 |
+
- type: mrr_at_3
|
1669 |
+
value: 51.754
|
1670 |
+
- type: mrr_at_5
|
1671 |
+
value: 53.086
|
1672 |
+
- type: ndcg_at_1
|
1673 |
+
value: 42.724000000000004
|
1674 |
+
- type: ndcg_at_10
|
1675 |
+
value: 34.769
|
1676 |
+
- type: ndcg_at_100
|
1677 |
+
value: 32.283
|
1678 |
+
- type: ndcg_at_1000
|
1679 |
+
value: 40.843
|
1680 |
+
- type: ndcg_at_3
|
1681 |
+
value: 39.852
|
1682 |
+
- type: ndcg_at_5
|
1683 |
+
value: 37.858999999999995
|
1684 |
+
- type: precision_at_1
|
1685 |
+
value: 44.272
|
1686 |
+
- type: precision_at_10
|
1687 |
+
value: 26.068
|
1688 |
+
- type: precision_at_100
|
1689 |
+
value: 8.328000000000001
|
1690 |
+
- type: precision_at_1000
|
1691 |
+
value: 2.1
|
1692 |
+
- type: precision_at_3
|
1693 |
+
value: 37.874
|
1694 |
+
- type: precision_at_5
|
1695 |
+
value: 33.065
|
1696 |
+
- type: recall_at_1
|
1697 |
+
value: 5.548
|
1698 |
+
- type: recall_at_10
|
1699 |
+
value: 16.936999999999998
|
1700 |
+
- type: recall_at_100
|
1701 |
+
value: 33.72
|
1702 |
+
- type: recall_at_1000
|
1703 |
+
value: 64.348
|
1704 |
+
- type: recall_at_3
|
1705 |
+
value: 10.764999999999999
|
1706 |
+
- type: recall_at_5
|
1707 |
+
value: 13.361
|
1708 |
+
- task:
|
1709 |
+
type: Retrieval
|
1710 |
+
dataset:
|
1711 |
+
type: nq
|
1712 |
+
name: MTEB NQ
|
1713 |
+
config: default
|
1714 |
+
split: test
|
1715 |
+
revision: None
|
1716 |
+
metrics:
|
1717 |
+
- type: map_at_1
|
1718 |
+
value: 28.008
|
1719 |
+
- type: map_at_10
|
1720 |
+
value: 42.675000000000004
|
1721 |
+
- type: map_at_100
|
1722 |
+
value: 43.85
|
1723 |
+
- type: map_at_1000
|
1724 |
+
value: 43.884
|
1725 |
+
- type: map_at_3
|
1726 |
+
value: 38.286
|
1727 |
+
- type: map_at_5
|
1728 |
+
value: 40.78
|
1729 |
+
- type: mrr_at_1
|
1730 |
+
value: 31.518
|
1731 |
+
- type: mrr_at_10
|
1732 |
+
value: 45.015
|
1733 |
+
- type: mrr_at_100
|
1734 |
+
value: 45.924
|
1735 |
+
- type: mrr_at_1000
|
1736 |
+
value: 45.946999999999996
|
1737 |
+
- type: mrr_at_3
|
1738 |
+
value: 41.348
|
1739 |
+
- type: mrr_at_5
|
1740 |
+
value: 43.428
|
1741 |
+
- type: ndcg_at_1
|
1742 |
+
value: 31.489
|
1743 |
+
- type: ndcg_at_10
|
1744 |
+
value: 50.285999999999994
|
1745 |
+
- type: ndcg_at_100
|
1746 |
+
value: 55.291999999999994
|
1747 |
+
- type: ndcg_at_1000
|
1748 |
+
value: 56.05
|
1749 |
+
- type: ndcg_at_3
|
1750 |
+
value: 41.976
|
1751 |
+
- type: ndcg_at_5
|
1752 |
+
value: 46.103
|
1753 |
+
- type: precision_at_1
|
1754 |
+
value: 31.489
|
1755 |
+
- type: precision_at_10
|
1756 |
+
value: 8.456
|
1757 |
+
- type: precision_at_100
|
1758 |
+
value: 1.125
|
1759 |
+
- type: precision_at_1000
|
1760 |
+
value: 0.12
|
1761 |
+
- type: precision_at_3
|
1762 |
+
value: 19.09
|
1763 |
+
- type: precision_at_5
|
1764 |
+
value: 13.841000000000001
|
1765 |
+
- type: recall_at_1
|
1766 |
+
value: 28.008
|
1767 |
+
- type: recall_at_10
|
1768 |
+
value: 71.21499999999999
|
1769 |
+
- type: recall_at_100
|
1770 |
+
value: 92.99
|
1771 |
+
- type: recall_at_1000
|
1772 |
+
value: 98.578
|
1773 |
+
- type: recall_at_3
|
1774 |
+
value: 49.604
|
1775 |
+
- type: recall_at_5
|
1776 |
+
value: 59.094
|
1777 |
+
- task:
|
1778 |
+
type: Retrieval
|
1779 |
+
dataset:
|
1780 |
+
type: quora
|
1781 |
+
name: MTEB QuoraRetrieval
|
1782 |
+
config: default
|
1783 |
+
split: test
|
1784 |
+
revision: None
|
1785 |
+
metrics:
|
1786 |
+
- type: map_at_1
|
1787 |
+
value: 70.351
|
1788 |
+
- type: map_at_10
|
1789 |
+
value: 84.163
|
1790 |
+
- type: map_at_100
|
1791 |
+
value: 84.785
|
1792 |
+
- type: map_at_1000
|
1793 |
+
value: 84.801
|
1794 |
+
- type: map_at_3
|
1795 |
+
value: 81.16
|
1796 |
+
- type: map_at_5
|
1797 |
+
value: 83.031
|
1798 |
+
- type: mrr_at_1
|
1799 |
+
value: 80.96
|
1800 |
+
- type: mrr_at_10
|
1801 |
+
value: 87.241
|
1802 |
+
- type: mrr_at_100
|
1803 |
+
value: 87.346
|
1804 |
+
- type: mrr_at_1000
|
1805 |
+
value: 87.347
|
1806 |
+
- type: mrr_at_3
|
1807 |
+
value: 86.25699999999999
|
1808 |
+
- type: mrr_at_5
|
1809 |
+
value: 86.907
|
1810 |
+
- type: ndcg_at_1
|
1811 |
+
value: 80.97
|
1812 |
+
- type: ndcg_at_10
|
1813 |
+
value: 88.017
|
1814 |
+
- type: ndcg_at_100
|
1815 |
+
value: 89.241
|
1816 |
+
- type: ndcg_at_1000
|
1817 |
+
value: 89.34299999999999
|
1818 |
+
- type: ndcg_at_3
|
1819 |
+
value: 85.053
|
1820 |
+
- type: ndcg_at_5
|
1821 |
+
value: 86.663
|
1822 |
+
- type: precision_at_1
|
1823 |
+
value: 80.97
|
1824 |
+
- type: precision_at_10
|
1825 |
+
value: 13.358
|
1826 |
+
- type: precision_at_100
|
1827 |
+
value: 1.525
|
1828 |
+
- type: precision_at_1000
|
1829 |
+
value: 0.157
|
1830 |
+
- type: precision_at_3
|
1831 |
+
value: 37.143
|
1832 |
+
- type: precision_at_5
|
1833 |
+
value: 24.451999999999998
|
1834 |
+
- type: recall_at_1
|
1835 |
+
value: 70.351
|
1836 |
+
- type: recall_at_10
|
1837 |
+
value: 95.39800000000001
|
1838 |
+
- type: recall_at_100
|
1839 |
+
value: 99.55199999999999
|
1840 |
+
- type: recall_at_1000
|
1841 |
+
value: 99.978
|
1842 |
+
- type: recall_at_3
|
1843 |
+
value: 86.913
|
1844 |
+
- type: recall_at_5
|
1845 |
+
value: 91.448
|
1846 |
+
- task:
|
1847 |
+
type: Clustering
|
1848 |
+
dataset:
|
1849 |
+
type: mteb/reddit-clustering
|
1850 |
+
name: MTEB RedditClustering
|
1851 |
+
config: default
|
1852 |
+
split: test
|
1853 |
+
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
|
1854 |
+
metrics:
|
1855 |
+
- type: v_measure
|
1856 |
+
value: 55.62406719814139
|
1857 |
+
- task:
|
1858 |
+
type: Clustering
|
1859 |
+
dataset:
|
1860 |
+
type: mteb/reddit-clustering-p2p
|
1861 |
+
name: MTEB RedditClusteringP2P
|
1862 |
+
config: default
|
1863 |
+
split: test
|
1864 |
+
revision: 282350215ef01743dc01b456c7f5241fa8937f16
|
1865 |
+
metrics:
|
1866 |
+
- type: v_measure
|
1867 |
+
value: 61.386700035141736
|
1868 |
+
- task:
|
1869 |
+
type: Retrieval
|
1870 |
+
dataset:
|
1871 |
+
type: scidocs
|
1872 |
+
name: MTEB SCIDOCS
|
1873 |
+
config: default
|
1874 |
+
split: test
|
1875 |
+
revision: None
|
1876 |
+
metrics:
|
1877 |
+
- type: map_at_1
|
1878 |
+
value: 4.618
|
1879 |
+
- type: map_at_10
|
1880 |
+
value: 12.920000000000002
|
1881 |
+
- type: map_at_100
|
1882 |
+
value: 15.304
|
1883 |
+
- type: map_at_1000
|
1884 |
+
value: 15.656999999999998
|
1885 |
+
- type: map_at_3
|
1886 |
+
value: 9.187
|
1887 |
+
- type: map_at_5
|
1888 |
+
value: 10.937
|
1889 |
+
- type: mrr_at_1
|
1890 |
+
value: 22.8
|
1891 |
+
- type: mrr_at_10
|
1892 |
+
value: 35.13
|
1893 |
+
- type: mrr_at_100
|
1894 |
+
value: 36.239
|
1895 |
+
- type: mrr_at_1000
|
1896 |
+
value: 36.291000000000004
|
1897 |
+
- type: mrr_at_3
|
1898 |
+
value: 31.917
|
1899 |
+
- type: mrr_at_5
|
1900 |
+
value: 33.787
|
1901 |
+
- type: ndcg_at_1
|
1902 |
+
value: 22.8
|
1903 |
+
- type: ndcg_at_10
|
1904 |
+
value: 21.382
|
1905 |
+
- type: ndcg_at_100
|
1906 |
+
value: 30.257
|
1907 |
+
- type: ndcg_at_1000
|
1908 |
+
value: 36.001
|
1909 |
+
- type: ndcg_at_3
|
1910 |
+
value: 20.43
|
1911 |
+
- type: ndcg_at_5
|
1912 |
+
value: 17.622
|
1913 |
+
- type: precision_at_1
|
1914 |
+
value: 22.8
|
1915 |
+
- type: precision_at_10
|
1916 |
+
value: 11.26
|
1917 |
+
- type: precision_at_100
|
1918 |
+
value: 2.405
|
1919 |
+
- type: precision_at_1000
|
1920 |
+
value: 0.377
|
1921 |
+
- type: precision_at_3
|
1922 |
+
value: 19.633
|
1923 |
+
- type: precision_at_5
|
1924 |
+
value: 15.68
|
1925 |
+
- type: recall_at_1
|
1926 |
+
value: 4.618
|
1927 |
+
- type: recall_at_10
|
1928 |
+
value: 22.811999999999998
|
1929 |
+
- type: recall_at_100
|
1930 |
+
value: 48.787000000000006
|
1931 |
+
- type: recall_at_1000
|
1932 |
+
value: 76.63799999999999
|
1933 |
+
- type: recall_at_3
|
1934 |
+
value: 11.952
|
1935 |
+
- type: recall_at_5
|
1936 |
+
value: 15.892000000000001
|
1937 |
+
- task:
|
1938 |
+
type: STS
|
1939 |
+
dataset:
|
1940 |
+
type: mteb/sickr-sts
|
1941 |
+
name: MTEB SICK-R
|
1942 |
+
config: default
|
1943 |
+
split: test
|
1944 |
+
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
|
1945 |
+
metrics:
|
1946 |
+
- type: cos_sim_pearson
|
1947 |
+
value: 84.01529458252244
|
1948 |
+
- type: cos_sim_spearman
|
1949 |
+
value: 77.92985224770254
|
1950 |
+
- type: euclidean_pearson
|
1951 |
+
value: 81.04251429422487
|
1952 |
+
- type: euclidean_spearman
|
1953 |
+
value: 77.92838490549133
|
1954 |
+
- type: manhattan_pearson
|
1955 |
+
value: 80.95892251458979
|
1956 |
+
- type: manhattan_spearman
|
1957 |
+
value: 77.81028089705941
|
1958 |
+
- task:
|
1959 |
+
type: STS
|
1960 |
+
dataset:
|
1961 |
+
type: mteb/sts12-sts
|
1962 |
+
name: MTEB STS12
|
1963 |
+
config: default
|
1964 |
+
split: test
|
1965 |
+
revision: a0d554a64d88156834ff5ae9920b964011b16384
|
1966 |
+
metrics:
|
1967 |
+
- type: cos_sim_pearson
|
1968 |
+
value: 83.97885282534388
|
1969 |
+
- type: cos_sim_spearman
|
1970 |
+
value: 75.1221970851712
|
1971 |
+
- type: euclidean_pearson
|
1972 |
+
value: 80.34455956720097
|
1973 |
+
- type: euclidean_spearman
|
1974 |
+
value: 74.5894274239938
|
1975 |
+
- type: manhattan_pearson
|
1976 |
+
value: 80.38999766325465
|
1977 |
+
- type: manhattan_spearman
|
1978 |
+
value: 74.68524557166975
|
1979 |
+
- task:
|
1980 |
+
type: STS
|
1981 |
+
dataset:
|
1982 |
+
type: mteb/sts13-sts
|
1983 |
+
name: MTEB STS13
|
1984 |
+
config: default
|
1985 |
+
split: test
|
1986 |
+
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
|
1987 |
+
metrics:
|
1988 |
+
- type: cos_sim_pearson
|
1989 |
+
value: 82.95746064915672
|
1990 |
+
- type: cos_sim_spearman
|
1991 |
+
value: 85.08683458043946
|
1992 |
+
- type: euclidean_pearson
|
1993 |
+
value: 84.56699492836385
|
1994 |
+
- type: euclidean_spearman
|
1995 |
+
value: 85.66089116133713
|
1996 |
+
- type: manhattan_pearson
|
1997 |
+
value: 84.47553323458541
|
1998 |
+
- type: manhattan_spearman
|
1999 |
+
value: 85.56142206781472
|
2000 |
+
- task:
|
2001 |
+
type: STS
|
2002 |
+
dataset:
|
2003 |
+
type: mteb/sts14-sts
|
2004 |
+
name: MTEB STS14
|
2005 |
+
config: default
|
2006 |
+
split: test
|
2007 |
+
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
|
2008 |
+
metrics:
|
2009 |
+
- type: cos_sim_pearson
|
2010 |
+
value: 82.71377893595067
|
2011 |
+
- type: cos_sim_spearman
|
2012 |
+
value: 81.03453291428589
|
2013 |
+
- type: euclidean_pearson
|
2014 |
+
value: 82.57136298308613
|
2015 |
+
- type: euclidean_spearman
|
2016 |
+
value: 81.15839961890875
|
2017 |
+
- type: manhattan_pearson
|
2018 |
+
value: 82.55157879373837
|
2019 |
+
- type: manhattan_spearman
|
2020 |
+
value: 81.1540163767054
|
2021 |
+
- task:
|
2022 |
+
type: STS
|
2023 |
+
dataset:
|
2024 |
+
type: mteb/sts15-sts
|
2025 |
+
name: MTEB STS15
|
2026 |
+
config: default
|
2027 |
+
split: test
|
2028 |
+
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
|
2029 |
+
metrics:
|
2030 |
+
- type: cos_sim_pearson
|
2031 |
+
value: 86.64197832372373
|
2032 |
+
- type: cos_sim_spearman
|
2033 |
+
value: 88.31966852492485
|
2034 |
+
- type: euclidean_pearson
|
2035 |
+
value: 87.98692129976983
|
2036 |
+
- type: euclidean_spearman
|
2037 |
+
value: 88.6247340837856
|
2038 |
+
- type: manhattan_pearson
|
2039 |
+
value: 87.90437827826412
|
2040 |
+
- type: manhattan_spearman
|
2041 |
+
value: 88.56278787131457
|
2042 |
+
- task:
|
2043 |
+
type: STS
|
2044 |
+
dataset:
|
2045 |
+
type: mteb/sts16-sts
|
2046 |
+
name: MTEB STS16
|
2047 |
+
config: default
|
2048 |
+
split: test
|
2049 |
+
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
|
2050 |
+
metrics:
|
2051 |
+
- type: cos_sim_pearson
|
2052 |
+
value: 81.84159950146693
|
2053 |
+
- type: cos_sim_spearman
|
2054 |
+
value: 83.90678384140168
|
2055 |
+
- type: euclidean_pearson
|
2056 |
+
value: 83.19005018860221
|
2057 |
+
- type: euclidean_spearman
|
2058 |
+
value: 84.16260415876295
|
2059 |
+
- type: manhattan_pearson
|
2060 |
+
value: 83.05030612994494
|
2061 |
+
- type: manhattan_spearman
|
2062 |
+
value: 83.99605629718336
|
2063 |
+
- task:
|
2064 |
+
type: STS
|
2065 |
+
dataset:
|
2066 |
+
type: mteb/sts17-crosslingual-sts
|
2067 |
+
name: MTEB STS17 (en-en)
|
2068 |
+
config: en-en
|
2069 |
+
split: test
|
2070 |
+
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
|
2071 |
+
metrics:
|
2072 |
+
- type: cos_sim_pearson
|
2073 |
+
value: 87.49935350176666
|
2074 |
+
- type: cos_sim_spearman
|
2075 |
+
value: 87.59086606735383
|
2076 |
+
- type: euclidean_pearson
|
2077 |
+
value: 88.06537181129983
|
2078 |
+
- type: euclidean_spearman
|
2079 |
+
value: 87.6687448086014
|
2080 |
+
- type: manhattan_pearson
|
2081 |
+
value: 87.96599131972935
|
2082 |
+
- type: manhattan_spearman
|
2083 |
+
value: 87.63295748969642
|
2084 |
+
- task:
|
2085 |
+
type: STS
|
2086 |
+
dataset:
|
2087 |
+
type: mteb/sts22-crosslingual-sts
|
2088 |
+
name: MTEB STS22 (en)
|
2089 |
+
config: en
|
2090 |
+
split: test
|
2091 |
+
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
|
2092 |
+
metrics:
|
2093 |
+
- type: cos_sim_pearson
|
2094 |
+
value: 67.68232799482763
|
2095 |
+
- type: cos_sim_spearman
|
2096 |
+
value: 67.99930378085793
|
2097 |
+
- type: euclidean_pearson
|
2098 |
+
value: 68.50275360001696
|
2099 |
+
- type: euclidean_spearman
|
2100 |
+
value: 67.81588179309259
|
2101 |
+
- type: manhattan_pearson
|
2102 |
+
value: 68.5892154749763
|
2103 |
+
- type: manhattan_spearman
|
2104 |
+
value: 67.84357259640682
|
2105 |
+
- task:
|
2106 |
+
type: STS
|
2107 |
+
dataset:
|
2108 |
+
type: mteb/stsbenchmark-sts
|
2109 |
+
name: MTEB STSBenchmark
|
2110 |
+
config: default
|
2111 |
+
split: test
|
2112 |
+
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
|
2113 |
+
metrics:
|
2114 |
+
- type: cos_sim_pearson
|
2115 |
+
value: 84.37049618406554
|
2116 |
+
- type: cos_sim_spearman
|
2117 |
+
value: 85.57014313159492
|
2118 |
+
- type: euclidean_pearson
|
2119 |
+
value: 85.57469513908282
|
2120 |
+
- type: euclidean_spearman
|
2121 |
+
value: 85.661948135258
|
2122 |
+
- type: manhattan_pearson
|
2123 |
+
value: 85.36866831229028
|
2124 |
+
- type: manhattan_spearman
|
2125 |
+
value: 85.5043455368843
|
2126 |
+
- task:
|
2127 |
+
type: Reranking
|
2128 |
+
dataset:
|
2129 |
+
type: mteb/scidocs-reranking
|
2130 |
+
name: MTEB SciDocsRR
|
2131 |
+
config: default
|
2132 |
+
split: test
|
2133 |
+
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
|
2134 |
+
metrics:
|
2135 |
+
- type: map
|
2136 |
+
value: 84.83259065376154
|
2137 |
+
- type: mrr
|
2138 |
+
value: 95.58455433455433
|
2139 |
+
- task:
|
2140 |
+
type: Retrieval
|
2141 |
+
dataset:
|
2142 |
+
type: scifact
|
2143 |
+
name: MTEB SciFact
|
2144 |
+
config: default
|
2145 |
+
split: test
|
2146 |
+
revision: None
|
2147 |
+
metrics:
|
2148 |
+
- type: map_at_1
|
2149 |
+
value: 58.817
|
2150 |
+
- type: map_at_10
|
2151 |
+
value: 68.459
|
2152 |
+
- type: map_at_100
|
2153 |
+
value: 68.951
|
2154 |
+
- type: map_at_1000
|
2155 |
+
value: 68.979
|
2156 |
+
- type: map_at_3
|
2157 |
+
value: 65.791
|
2158 |
+
- type: map_at_5
|
2159 |
+
value: 67.583
|
2160 |
+
- type: mrr_at_1
|
2161 |
+
value: 61.667
|
2162 |
+
- type: mrr_at_10
|
2163 |
+
value: 69.368
|
2164 |
+
- type: mrr_at_100
|
2165 |
+
value: 69.721
|
2166 |
+
- type: mrr_at_1000
|
2167 |
+
value: 69.744
|
2168 |
+
- type: mrr_at_3
|
2169 |
+
value: 67.278
|
2170 |
+
- type: mrr_at_5
|
2171 |
+
value: 68.611
|
2172 |
+
- type: ndcg_at_1
|
2173 |
+
value: 61.667
|
2174 |
+
- type: ndcg_at_10
|
2175 |
+
value: 72.70100000000001
|
2176 |
+
- type: ndcg_at_100
|
2177 |
+
value: 74.928
|
2178 |
+
- type: ndcg_at_1000
|
2179 |
+
value: 75.553
|
2180 |
+
- type: ndcg_at_3
|
2181 |
+
value: 68.203
|
2182 |
+
- type: ndcg_at_5
|
2183 |
+
value: 70.804
|
2184 |
+
- type: precision_at_1
|
2185 |
+
value: 61.667
|
2186 |
+
- type: precision_at_10
|
2187 |
+
value: 9.533
|
2188 |
+
- type: precision_at_100
|
2189 |
+
value: 1.077
|
2190 |
+
- type: precision_at_1000
|
2191 |
+
value: 0.11299999999999999
|
2192 |
+
- type: precision_at_3
|
2193 |
+
value: 26.444000000000003
|
2194 |
+
- type: precision_at_5
|
2195 |
+
value: 17.599999999999998
|
2196 |
+
- type: recall_at_1
|
2197 |
+
value: 58.817
|
2198 |
+
- type: recall_at_10
|
2199 |
+
value: 84.789
|
2200 |
+
- type: recall_at_100
|
2201 |
+
value: 95.0
|
2202 |
+
- type: recall_at_1000
|
2203 |
+
value: 99.667
|
2204 |
+
- type: recall_at_3
|
2205 |
+
value: 72.8
|
2206 |
+
- type: recall_at_5
|
2207 |
+
value: 79.294
|
2208 |
+
- task:
|
2209 |
+
type: PairClassification
|
2210 |
+
dataset:
|
2211 |
+
type: mteb/sprintduplicatequestions-pairclassification
|
2212 |
+
name: MTEB SprintDuplicateQuestions
|
2213 |
+
config: default
|
2214 |
+
split: test
|
2215 |
+
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
|
2216 |
+
metrics:
|
2217 |
+
- type: cos_sim_accuracy
|
2218 |
+
value: 99.8108910891089
|
2219 |
+
- type: cos_sim_ap
|
2220 |
+
value: 95.5743678558349
|
2221 |
+
- type: cos_sim_f1
|
2222 |
+
value: 90.43133366385722
|
2223 |
+
- type: cos_sim_precision
|
2224 |
+
value: 89.67551622418878
|
2225 |
+
- type: cos_sim_recall
|
2226 |
+
value: 91.2
|
2227 |
+
- type: dot_accuracy
|
2228 |
+
value: 99.75841584158415
|
2229 |
+
- type: dot_ap
|
2230 |
+
value: 94.00786363627253
|
2231 |
+
- type: dot_f1
|
2232 |
+
value: 87.51910341314316
|
2233 |
+
- type: dot_precision
|
2234 |
+
value: 89.20041536863967
|
2235 |
+
- type: dot_recall
|
2236 |
+
value: 85.9
|
2237 |
+
- type: euclidean_accuracy
|
2238 |
+
value: 99.81485148514851
|
2239 |
+
- type: euclidean_ap
|
2240 |
+
value: 95.4752113136905
|
2241 |
+
- type: euclidean_f1
|
2242 |
+
value: 90.44334975369456
|
2243 |
+
- type: euclidean_precision
|
2244 |
+
value: 89.126213592233
|
2245 |
+
- type: euclidean_recall
|
2246 |
+
value: 91.8
|
2247 |
+
- type: manhattan_accuracy
|
2248 |
+
value: 99.81584158415842
|
2249 |
+
- type: manhattan_ap
|
2250 |
+
value: 95.5163172682464
|
2251 |
+
- type: manhattan_f1
|
2252 |
+
value: 90.51987767584097
|
2253 |
+
- type: manhattan_precision
|
2254 |
+
value: 92.3076923076923
|
2255 |
+
- type: manhattan_recall
|
2256 |
+
value: 88.8
|
2257 |
+
- type: max_accuracy
|
2258 |
+
value: 99.81584158415842
|
2259 |
+
- type: max_ap
|
2260 |
+
value: 95.5743678558349
|
2261 |
+
- type: max_f1
|
2262 |
+
value: 90.51987767584097
|
2263 |
+
- task:
|
2264 |
+
type: Clustering
|
2265 |
+
dataset:
|
2266 |
+
type: mteb/stackexchange-clustering
|
2267 |
+
name: MTEB StackExchangeClustering
|
2268 |
+
config: default
|
2269 |
+
split: test
|
2270 |
+
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
|
2271 |
+
metrics:
|
2272 |
+
- type: v_measure
|
2273 |
+
value: 62.63235986949449
|
2274 |
+
- task:
|
2275 |
+
type: Clustering
|
2276 |
+
dataset:
|
2277 |
+
type: mteb/stackexchange-clustering-p2p
|
2278 |
+
name: MTEB StackExchangeClusteringP2P
|
2279 |
+
config: default
|
2280 |
+
split: test
|
2281 |
+
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
|
2282 |
+
metrics:
|
2283 |
+
- type: v_measure
|
2284 |
+
value: 36.334795589585575
|
2285 |
+
- task:
|
2286 |
+
type: Reranking
|
2287 |
+
dataset:
|
2288 |
+
type: mteb/stackoverflowdupquestions-reranking
|
2289 |
+
name: MTEB StackOverflowDupQuestions
|
2290 |
+
config: default
|
2291 |
+
split: test
|
2292 |
+
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
|
2293 |
+
metrics:
|
2294 |
+
- type: map
|
2295 |
+
value: 52.02955214518782
|
2296 |
+
- type: mrr
|
2297 |
+
value: 52.8004838298956
|
2298 |
+
- task:
|
2299 |
+
type: Summarization
|
2300 |
+
dataset:
|
2301 |
+
type: mteb/summeval
|
2302 |
+
name: MTEB SummEval
|
2303 |
+
config: default
|
2304 |
+
split: test
|
2305 |
+
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
|
2306 |
+
metrics:
|
2307 |
+
- type: cos_sim_pearson
|
2308 |
+
value: 30.63769566275453
|
2309 |
+
- type: cos_sim_spearman
|
2310 |
+
value: 30.422379185989335
|
2311 |
+
- type: dot_pearson
|
2312 |
+
value: 26.88493071882256
|
2313 |
+
- type: dot_spearman
|
2314 |
+
value: 26.505249740971305
|
2315 |
+
- task:
|
2316 |
+
type: Retrieval
|
2317 |
+
dataset:
|
2318 |
+
type: trec-covid
|
2319 |
+
name: MTEB TRECCOVID
|
2320 |
+
config: default
|
2321 |
+
split: test
|
2322 |
+
revision: None
|
2323 |
+
metrics:
|
2324 |
+
- type: map_at_1
|
2325 |
+
value: 0.21
|
2326 |
+
- type: map_at_10
|
2327 |
+
value: 1.654
|
2328 |
+
- type: map_at_100
|
2329 |
+
value: 10.095
|
2330 |
+
- type: map_at_1000
|
2331 |
+
value: 25.808999999999997
|
2332 |
+
- type: map_at_3
|
2333 |
+
value: 0.594
|
2334 |
+
- type: map_at_5
|
2335 |
+
value: 0.9289999999999999
|
2336 |
+
- type: mrr_at_1
|
2337 |
+
value: 78.0
|
2338 |
+
- type: mrr_at_10
|
2339 |
+
value: 87.019
|
2340 |
+
- type: mrr_at_100
|
2341 |
+
value: 87.019
|
2342 |
+
- type: mrr_at_1000
|
2343 |
+
value: 87.019
|
2344 |
+
- type: mrr_at_3
|
2345 |
+
value: 86.333
|
2346 |
+
- type: mrr_at_5
|
2347 |
+
value: 86.733
|
2348 |
+
- type: ndcg_at_1
|
2349 |
+
value: 73.0
|
2350 |
+
- type: ndcg_at_10
|
2351 |
+
value: 66.52900000000001
|
2352 |
+
- type: ndcg_at_100
|
2353 |
+
value: 53.433
|
2354 |
+
- type: ndcg_at_1000
|
2355 |
+
value: 51.324000000000005
|
2356 |
+
- type: ndcg_at_3
|
2357 |
+
value: 72.02199999999999
|
2358 |
+
- type: ndcg_at_5
|
2359 |
+
value: 69.696
|
2360 |
+
- type: precision_at_1
|
2361 |
+
value: 78.0
|
2362 |
+
- type: precision_at_10
|
2363 |
+
value: 70.39999999999999
|
2364 |
+
- type: precision_at_100
|
2365 |
+
value: 55.46
|
2366 |
+
- type: precision_at_1000
|
2367 |
+
value: 22.758
|
2368 |
+
- type: precision_at_3
|
2369 |
+
value: 76.667
|
2370 |
+
- type: precision_at_5
|
2371 |
+
value: 74.0
|
2372 |
+
- type: recall_at_1
|
2373 |
+
value: 0.21
|
2374 |
+
- type: recall_at_10
|
2375 |
+
value: 1.8849999999999998
|
2376 |
+
- type: recall_at_100
|
2377 |
+
value: 13.801
|
2378 |
+
- type: recall_at_1000
|
2379 |
+
value: 49.649
|
2380 |
+
- type: recall_at_3
|
2381 |
+
value: 0.632
|
2382 |
+
- type: recall_at_5
|
2383 |
+
value: 1.009
|
2384 |
+
- task:
|
2385 |
+
type: Retrieval
|
2386 |
+
dataset:
|
2387 |
+
type: webis-touche2020
|
2388 |
+
name: MTEB Touche2020
|
2389 |
+
config: default
|
2390 |
+
split: test
|
2391 |
+
revision: None
|
2392 |
+
metrics:
|
2393 |
+
- type: map_at_1
|
2394 |
+
value: 1.797
|
2395 |
+
- type: map_at_10
|
2396 |
+
value: 9.01
|
2397 |
+
- type: map_at_100
|
2398 |
+
value: 14.682
|
2399 |
+
- type: map_at_1000
|
2400 |
+
value: 16.336000000000002
|
2401 |
+
- type: map_at_3
|
2402 |
+
value: 4.546
|
2403 |
+
- type: map_at_5
|
2404 |
+
value: 5.9270000000000005
|
2405 |
+
- type: mrr_at_1
|
2406 |
+
value: 24.490000000000002
|
2407 |
+
- type: mrr_at_10
|
2408 |
+
value: 41.156
|
2409 |
+
- type: mrr_at_100
|
2410 |
+
value: 42.392
|
2411 |
+
- type: mrr_at_1000
|
2412 |
+
value: 42.408
|
2413 |
+
- type: mrr_at_3
|
2414 |
+
value: 38.775999999999996
|
2415 |
+
- type: mrr_at_5
|
2416 |
+
value: 40.102
|
2417 |
+
- type: ndcg_at_1
|
2418 |
+
value: 21.429000000000002
|
2419 |
+
- type: ndcg_at_10
|
2420 |
+
value: 22.222
|
2421 |
+
- type: ndcg_at_100
|
2422 |
+
value: 34.405
|
2423 |
+
- type: ndcg_at_1000
|
2424 |
+
value: 46.599000000000004
|
2425 |
+
- type: ndcg_at_3
|
2426 |
+
value: 25.261
|
2427 |
+
- type: ndcg_at_5
|
2428 |
+
value: 22.695999999999998
|
2429 |
+
- type: precision_at_1
|
2430 |
+
value: 24.490000000000002
|
2431 |
+
- type: precision_at_10
|
2432 |
+
value: 19.796
|
2433 |
+
- type: precision_at_100
|
2434 |
+
value: 7.306
|
2435 |
+
- type: precision_at_1000
|
2436 |
+
value: 1.5350000000000001
|
2437 |
+
- type: precision_at_3
|
2438 |
+
value: 27.211000000000002
|
2439 |
+
- type: precision_at_5
|
2440 |
+
value: 22.857
|
2441 |
+
- type: recall_at_1
|
2442 |
+
value: 1.797
|
2443 |
+
- type: recall_at_10
|
2444 |
+
value: 15.706000000000001
|
2445 |
+
- type: recall_at_100
|
2446 |
+
value: 46.412
|
2447 |
+
- type: recall_at_1000
|
2448 |
+
value: 83.159
|
2449 |
+
- type: recall_at_3
|
2450 |
+
value: 6.1370000000000005
|
2451 |
+
- type: recall_at_5
|
2452 |
+
value: 8.599
|
2453 |
+
- task:
|
2454 |
+
type: Classification
|
2455 |
+
dataset:
|
2456 |
+
type: mteb/toxic_conversations_50k
|
2457 |
+
name: MTEB ToxicConversationsClassification
|
2458 |
+
config: default
|
2459 |
+
split: test
|
2460 |
+
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
|
2461 |
+
metrics:
|
2462 |
+
- type: accuracy
|
2463 |
+
value: 70.3302
|
2464 |
+
- type: ap
|
2465 |
+
value: 14.169121204575601
|
2466 |
+
- type: f1
|
2467 |
+
value: 54.229345975274235
|
2468 |
+
- task:
|
2469 |
+
type: Classification
|
2470 |
+
dataset:
|
2471 |
+
type: mteb/tweet_sentiment_extraction
|
2472 |
+
name: MTEB TweetSentimentExtractionClassification
|
2473 |
+
config: default
|
2474 |
+
split: test
|
2475 |
+
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
|
2476 |
+
metrics:
|
2477 |
+
- type: accuracy
|
2478 |
+
value: 58.22297679683077
|
2479 |
+
- type: f1
|
2480 |
+
value: 58.62984908377875
|
2481 |
+
- task:
|
2482 |
+
type: Clustering
|
2483 |
+
dataset:
|
2484 |
+
type: mteb/twentynewsgroups-clustering
|
2485 |
+
name: MTEB TwentyNewsgroupsClustering
|
2486 |
+
config: default
|
2487 |
+
split: test
|
2488 |
+
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
|
2489 |
+
metrics:
|
2490 |
+
- type: v_measure
|
2491 |
+
value: 49.952922428464255
|
2492 |
+
- task:
|
2493 |
+
type: PairClassification
|
2494 |
+
dataset:
|
2495 |
+
type: mteb/twittersemeval2015-pairclassification
|
2496 |
+
name: MTEB TwitterSemEval2015
|
2497 |
+
config: default
|
2498 |
+
split: test
|
2499 |
+
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
|
2500 |
+
metrics:
|
2501 |
+
- type: cos_sim_accuracy
|
2502 |
+
value: 84.68140907194373
|
2503 |
+
- type: cos_sim_ap
|
2504 |
+
value: 70.12180123666836
|
2505 |
+
- type: cos_sim_f1
|
2506 |
+
value: 65.77501791258658
|
2507 |
+
- type: cos_sim_precision
|
2508 |
+
value: 60.07853403141361
|
2509 |
+
- type: cos_sim_recall
|
2510 |
+
value: 72.66490765171504
|
2511 |
+
- type: dot_accuracy
|
2512 |
+
value: 81.92167848840674
|
2513 |
+
- type: dot_ap
|
2514 |
+
value: 60.49837581423469
|
2515 |
+
- type: dot_f1
|
2516 |
+
value: 58.44186046511628
|
2517 |
+
- type: dot_precision
|
2518 |
+
value: 52.24532224532224
|
2519 |
+
- type: dot_recall
|
2520 |
+
value: 66.3060686015831
|
2521 |
+
- type: euclidean_accuracy
|
2522 |
+
value: 84.73505394289802
|
2523 |
+
- type: euclidean_ap
|
2524 |
+
value: 70.3278904593286
|
2525 |
+
- type: euclidean_f1
|
2526 |
+
value: 65.98851124940161
|
2527 |
+
- type: euclidean_precision
|
2528 |
+
value: 60.38107752956636
|
2529 |
+
- type: euclidean_recall
|
2530 |
+
value: 72.74406332453826
|
2531 |
+
- type: manhattan_accuracy
|
2532 |
+
value: 84.73505394289802
|
2533 |
+
- type: manhattan_ap
|
2534 |
+
value: 70.00737738537337
|
2535 |
+
- type: manhattan_f1
|
2536 |
+
value: 65.80150784822642
|
2537 |
+
- type: manhattan_precision
|
2538 |
+
value: 61.892583120204606
|
2539 |
+
- type: manhattan_recall
|
2540 |
+
value: 70.23746701846966
|
2541 |
+
- type: max_accuracy
|
2542 |
+
value: 84.73505394289802
|
2543 |
+
- type: max_ap
|
2544 |
+
value: 70.3278904593286
|
2545 |
+
- type: max_f1
|
2546 |
+
value: 65.98851124940161
|
2547 |
+
- task:
|
2548 |
+
type: PairClassification
|
2549 |
+
dataset:
|
2550 |
+
type: mteb/twitterurlcorpus-pairclassification
|
2551 |
+
name: MTEB TwitterURLCorpus
|
2552 |
+
config: default
|
2553 |
+
split: test
|
2554 |
+
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
|
2555 |
+
metrics:
|
2556 |
+
- type: cos_sim_accuracy
|
2557 |
+
value: 88.44258159661582
|
2558 |
+
- type: cos_sim_ap
|
2559 |
+
value: 84.91926704880888
|
2560 |
+
- type: cos_sim_f1
|
2561 |
+
value: 77.07651086632926
|
2562 |
+
- type: cos_sim_precision
|
2563 |
+
value: 74.5894554883319
|
2564 |
+
- type: cos_sim_recall
|
2565 |
+
value: 79.73514012935017
|
2566 |
+
- type: dot_accuracy
|
2567 |
+
value: 85.88116583226608
|
2568 |
+
- type: dot_ap
|
2569 |
+
value: 78.9753854779923
|
2570 |
+
- type: dot_f1
|
2571 |
+
value: 72.17757637979255
|
2572 |
+
- type: dot_precision
|
2573 |
+
value: 66.80647486729143
|
2574 |
+
- type: dot_recall
|
2575 |
+
value: 78.48783492454572
|
2576 |
+
- type: euclidean_accuracy
|
2577 |
+
value: 88.5299025885823
|
2578 |
+
- type: euclidean_ap
|
2579 |
+
value: 85.08006075642194
|
2580 |
+
- type: euclidean_f1
|
2581 |
+
value: 77.29637336504163
|
2582 |
+
- type: euclidean_precision
|
2583 |
+
value: 74.69836253950014
|
2584 |
+
- type: euclidean_recall
|
2585 |
+
value: 80.08161379735141
|
2586 |
+
- type: manhattan_accuracy
|
2587 |
+
value: 88.55124771995187
|
2588 |
+
- type: manhattan_ap
|
2589 |
+
value: 85.00941529932851
|
2590 |
+
- type: manhattan_f1
|
2591 |
+
value: 77.33100233100232
|
2592 |
+
- type: manhattan_precision
|
2593 |
+
value: 73.37572573956317
|
2594 |
+
- type: manhattan_recall
|
2595 |
+
value: 81.73698798891284
|
2596 |
+
- type: max_accuracy
|
2597 |
+
value: 88.55124771995187
|
2598 |
+
- type: max_ap
|
2599 |
+
value: 85.08006075642194
|
2600 |
+
- type: max_f1
|
2601 |
+
value: 77.33100233100232
|
2602 |
+
language:
|
2603 |
+
- en
|
2604 |
license: mit
|
2605 |
---
|
2606 |
+
|
2607 |
+
# gte-small
|
2608 |
+
|
2609 |
+
General Text Embeddings (GTE) model. [Towards General Text Embeddings with Multi-stage Contrastive Learning](https://arxiv.org/abs/2308.03281)
|
2610 |
+
|
2611 |
+
The GTE models are trained by Alibaba DAMO Academy. They are mainly based on the BERT framework and currently offer three different sizes of models, including [GTE-large](https://huggingface.co/thenlper/gte-large), [GTE-base](https://huggingface.co/thenlper/gte-base), and [GTE-small](https://huggingface.co/thenlper/gte-small). The GTE models are trained on a large-scale corpus of relevance text pairs, covering a wide range of domains and scenarios. This enables the GTE models to be applied to various downstream tasks of text embeddings, including **information retrieval**, **semantic textual similarity**, **text reranking**, etc.
|
2612 |
+
|
2613 |
+
## Metrics
|
2614 |
+
|
2615 |
+
We compared the performance of the GTE models with other popular text embedding models on the MTEB benchmark. For more detailed comparison results, please refer to the [MTEB leaderboard](https://huggingface.co/spaces/mteb/leaderboard).
|
2616 |
+
|
2617 |
+
|
2618 |
+
|
2619 |
+
| Model Name | Model Size (GB) | Dimension | Sequence Length | Average (56) | Clustering (11) | Pair Classification (3) | Reranking (4) | Retrieval (15) | STS (10) | Summarization (1) | Classification (12) |
|
2620 |
+
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
|
2621 |
+
| [**gte-large**](https://huggingface.co/thenlper/gte-large) | 0.67 | 1024 | 512 | **63.13** | 46.84 | 85.00 | 59.13 | 52.22 | 83.35 | 31.66 | 73.33 |
|
2622 |
+
| [**gte-base**](https://huggingface.co/thenlper/gte-base) | 0.22 | 768 | 512 | **62.39** | 46.2 | 84.57 | 58.61 | 51.14 | 82.3 | 31.17 | 73.01 |
|
2623 |
+
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) | 1.34 | 1024| 512 | 62.25 | 44.49 | 86.03 | 56.61 | 50.56 | 82.05 | 30.19 | 75.24 |
|
2624 |
+
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.44 | 768 | 512 | 61.5 | 43.80 | 85.73 | 55.91 | 50.29 | 81.05 | 30.28 | 73.84 |
|
2625 |
+
| [**gte-small**](https://huggingface.co/thenlper/gte-small) | 0.07 | 384 | 512 | **61.36** | 44.89 | 83.54 | 57.7 | 49.46 | 82.07 | 30.42 | 72.31 |
|
2626 |
+
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | - | 1536 | 8192 | 60.99 | 45.9 | 84.89 | 56.32 | 49.25 | 80.97 | 30.8 | 70.93 |
|
2627 |
+
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 0.13 | 384 | 512 | 59.93 | 39.92 | 84.67 | 54.32 | 49.04 | 80.39 | 31.16 | 72.94 |
|
2628 |
+
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) | 9.73 | 768 | 512 | 59.51 | 43.72 | 85.06 | 56.42 | 42.24 | 82.63 | 30.08 | 73.42 |
|
2629 |
+
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) | 0.44 | 768 | 514 | 57.78 | 43.69 | 83.04 | 59.36 | 43.81 | 80.28 | 27.49 | 65.07 |
|
2630 |
+
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) | 28.27 | 4096 | 2048 | 57.59 | 38.93 | 81.9 | 55.65 | 48.22 | 77.74 | 33.6 | 66.19 |
|
2631 |
+
| [all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) | 0.13 | 384 | 512 | 56.53 | 41.81 | 82.41 | 58.44 | 42.69 | 79.8 | 27.9 | 63.21 |
|
2632 |
+
| [all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) | 0.09 | 384 | 512 | 56.26 | 42.35 | 82.37 | 58.04 | 41.95 | 78.9 | 30.81 | 63.05 |
|
2633 |
+
| [contriever-base-msmarco](https://huggingface.co/nthakur/contriever-base-msmarco) | 0.44 | 768 | 512 | 56.00 | 41.1 | 82.54 | 53.14 | 41.88 | 76.51 | 30.36 | 66.68 |
|
2634 |
+
| [sentence-t5-base](https://huggingface.co/sentence-transformers/sentence-t5-base) | 0.22 | 768 | 512 | 55.27 | 40.21 | 85.18 | 53.09 | 33.63 | 81.14 | 31.39 | 69.81 |
|
2635 |
+
|
2636 |
+
|
2637 |
+
## Usage
|
2638 |
+
|
2639 |
+
Code example
|
2640 |
+
|
2641 |
+
```python
|
2642 |
+
import torch.nn.functional as F
|
2643 |
+
from torch import Tensor
|
2644 |
+
from transformers import AutoTokenizer, AutoModel
|
2645 |
+
|
2646 |
+
def average_pool(last_hidden_states: Tensor,
|
2647 |
+
attention_mask: Tensor) -> Tensor:
|
2648 |
+
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
|
2649 |
+
return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]
|
2650 |
+
|
2651 |
+
input_texts = [
|
2652 |
+
"what is the capital of China?",
|
2653 |
+
"how to implement quick sort in python?",
|
2654 |
+
"Beijing",
|
2655 |
+
"sorting algorithms"
|
2656 |
+
]
|
2657 |
+
|
2658 |
+
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-small")
|
2659 |
+
model = AutoModel.from_pretrained("thenlper/gte-small")
|
2660 |
+
|
2661 |
+
# Tokenize the input texts
|
2662 |
+
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')
|
2663 |
+
|
2664 |
+
outputs = model(**batch_dict)
|
2665 |
+
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])
|
2666 |
+
|
2667 |
+
# (Optionally) normalize embeddings
|
2668 |
+
embeddings = F.normalize(embeddings, p=2, dim=1)
|
2669 |
+
scores = (embeddings[:1] @ embeddings[1:].T) * 100
|
2670 |
+
print(scores.tolist())
|
2671 |
+
```
|
2672 |
+
|
2673 |
+
Use with sentence-transformers:
|
2674 |
+
```python
|
2675 |
+
from sentence_transformers import SentenceTransformer
|
2676 |
+
from sentence_transformers.util import cos_sim
|
2677 |
+
|
2678 |
+
sentences = ['That is a happy person', 'That is a very happy person']
|
2679 |
+
|
2680 |
+
model = SentenceTransformer('thenlper/gte-large')
|
2681 |
+
embeddings = model.encode(sentences)
|
2682 |
+
print(cos_sim(embeddings[0], embeddings[1]))
|
2683 |
+
```
|
2684 |
+
|
2685 |
+
### Limitation
|
2686 |
+
|
2687 |
+
This model exclusively caters to English texts, and any lengthy texts will be truncated to a maximum of 512 tokens.
|
2688 |
+
|
2689 |
+
### Citation
|
2690 |
+
|
2691 |
+
If you find our paper or models helpful, please consider citing them as follows:
|
2692 |
+
|
2693 |
+
```
|
2694 |
+
@misc{li2023general,
|
2695 |
+
title={Towards General Text Embeddings with Multi-stage Contrastive Learning},
|
2696 |
+
author={Zehan Li and Xin Zhang and Yanzhao Zhang and Dingkun Long and Pengjun Xie and Meishan Zhang},
|
2697 |
+
year={2023},
|
2698 |
+
eprint={2308.03281},
|
2699 |
+
archivePrefix={arXiv},
|
2700 |
+
primaryClass={cs.CL}
|
2701 |
+
}
|
2702 |
+
```
|
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"BertModel"
|
4 |
+
],
|
5 |
+
"attention_probs_dropout_prob": 0.1,
|
6 |
+
"classifier_dropout": null,
|
7 |
+
"hidden_act": "gelu",
|
8 |
+
"hidden_dropout_prob": 0.1,
|
9 |
+
"hidden_size": 384,
|
10 |
+
"initializer_range": 0.02,
|
11 |
+
"intermediate_size": 1536,
|
12 |
+
"layer_norm_eps": 1e-12,
|
13 |
+
"max_position_embeddings": 512,
|
14 |
+
"model_type": "bert",
|
15 |
+
"num_attention_heads": 12,
|
16 |
+
"num_hidden_layers": 12,
|
17 |
+
"pad_token_id": 0,
|
18 |
+
"position_embedding_type": "absolute",
|
19 |
+
"torch_dtype": "float16",
|
20 |
+
"transformers_version": "4.28.1",
|
21 |
+
"type_vocab_size": 2,
|
22 |
+
"use_cache": true,
|
23 |
+
"vocab_size": 30522
|
24 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a1eb90bbac323ea08aa5629b624fe6ae75db121b904799c2266a1e2c2de22d2
|
3 |
+
size 66746168
|
modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
onnx/model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:398a29991324e0b383afa13375d681ced3079c83e097fb1ebd9290d7498523b3
|
3 |
+
size 133093490
|
onnx/model_quantized.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18dec105109b6004369799ca4761fb8fb413c64172c02147bcfac186b5c5f6cb
|
3 |
+
size 34014426
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:344099675ecefb2dc886e6dcc1fba7ccc0c66dbf455e8aa289035ee8d688f125
|
3 |
+
size 66751231
|
quantize_config.json
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"per_channel": true,
|
3 |
+
"reduce_range": true,
|
4 |
+
"per_model_config": {
|
5 |
+
"model": {
|
6 |
+
"op_types": [
|
7 |
+
"Div",
|
8 |
+
"Cast",
|
9 |
+
"MatMul",
|
10 |
+
"Add",
|
11 |
+
"Shape",
|
12 |
+
"ReduceMean",
|
13 |
+
"Sqrt",
|
14 |
+
"Mul",
|
15 |
+
"Slice",
|
16 |
+
"Erf",
|
17 |
+
"Unsqueeze",
|
18 |
+
"Concat",
|
19 |
+
"Pow",
|
20 |
+
"Sub",
|
21 |
+
"Gather",
|
22 |
+
"Reshape",
|
23 |
+
"Softmax",
|
24 |
+
"Constant",
|
25 |
+
"Transpose"
|
26 |
+
],
|
27 |
+
"weight_type": "QInt8"
|
28 |
+
}
|
29 |
+
}
|
30 |
+
}
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"clean_up_tokenization_spaces": true,
|
3 |
+
"cls_token": "[CLS]",
|
4 |
+
"do_basic_tokenize": true,
|
5 |
+
"do_lower_case": true,
|
6 |
+
"mask_token": "[MASK]",
|
7 |
+
"model_max_length": 1000000000000000019884624838656,
|
8 |
+
"never_split": null,
|
9 |
+
"pad_token": "[PAD]",
|
10 |
+
"sep_token": "[SEP]",
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "BertTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|