venkatesh-thiru
commited on
Upload model
Browse files- AUNet.py +212 -0
- AUNetConfig.py +28 -0
- config.json +20 -0
- pytorch_model.bin +2 -2
- s2l8hModel.py +20 -0
AUNet.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
|
7 |
+
|
8 |
+
class SqeezeExcite(nn.Module):
|
9 |
+
def __init__(self, channel, reduction_ratio = 16):
|
10 |
+
super(SqeezeExcite,self).__init__()
|
11 |
+
self.GAP = nn.AdaptiveAvgPool2d(1)
|
12 |
+
|
13 |
+
self.mlp = nn.Sequential(
|
14 |
+
nn.Linear(channel, channel//reduction_ratio, bias = False),
|
15 |
+
nn.ReLU(inplace=True),
|
16 |
+
nn.Linear(channel//reduction_ratio,channel,bias = False),
|
17 |
+
nn.Sigmoid()
|
18 |
+
)
|
19 |
+
|
20 |
+
def forward(self,x):
|
21 |
+
b,c,_,_ = x.size()
|
22 |
+
out = self.GAP(x).view(b,c)
|
23 |
+
out = self.mlp(out).view(b,c,1,1)
|
24 |
+
return x * out.expand_as(x)
|
25 |
+
|
26 |
+
|
27 |
+
class ECA(nn.Module):
|
28 |
+
# https://wandb.ai/diganta/ECANet-sweep/reports/Efficient-Channel-Attention--VmlldzozNzgwOTE
|
29 |
+
def __init__(self,channels, b = 1, gamma = 2):
|
30 |
+
super(ECA, self).__init__()
|
31 |
+
self.GAP = nn.AdaptiveAvgPool2d(1)
|
32 |
+
self.channels = channels
|
33 |
+
self.b = b
|
34 |
+
self.gamma = gamma
|
35 |
+
self.conv = nn.Conv1d(1, 1, kernel_size=self.adaptive_kernel(),padding = (self.adaptive_kernel()-1)//2, bias = False)
|
36 |
+
self.sigmoid = nn.Sigmoid()
|
37 |
+
|
38 |
+
def forward(self,x):
|
39 |
+
attn = self.GAP(x)
|
40 |
+
attn = self.conv(attn.squeeze(-1).transpose(-1,-2)).transpose(-1,-2).unsqueeze(-1)
|
41 |
+
attn = self.sigmoid(attn)
|
42 |
+
return x * attn.expand_as(x)
|
43 |
+
|
44 |
+
|
45 |
+
def adaptive_kernel(self):
|
46 |
+
k = int(abs(math.log2(self.channels)/self.gamma) + self.b)
|
47 |
+
ksize = k if k%2 else k+1
|
48 |
+
return ksize
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
class UNetConvBlock(nn.Module):
|
53 |
+
def __init__(self, in_channel, out_channel, ca_layer):
|
54 |
+
super(UNetConvBlock, self).__init__()
|
55 |
+
block = []
|
56 |
+
|
57 |
+
block.append(nn.Conv2d(in_channel, out_channel, kernel_size=3, stride=1, padding=1))
|
58 |
+
block.append(nn.PReLU())
|
59 |
+
|
60 |
+
block.append(nn.Conv2d(out_channel, out_channel, kernel_size=3, padding=1, stride=1))
|
61 |
+
block.append(nn.PReLU())
|
62 |
+
|
63 |
+
if ca_layer:
|
64 |
+
block.append(ECA(out_channel))
|
65 |
+
self.block = nn.Sequential(*block)
|
66 |
+
|
67 |
+
def forward(self, x):
|
68 |
+
out = self.block(x)
|
69 |
+
return out
|
70 |
+
|
71 |
+
class AttentionGate(nn.Module):
|
72 |
+
def __init__(self, F_g, F_l, dimensions):
|
73 |
+
super(AttentionGate, self).__init__()
|
74 |
+
self.W_gate = nn.Sequential(
|
75 |
+
nn.Conv2d(F_g, dimensions, kernel_size=1, stride=1, padding=0, bias=True),
|
76 |
+
nn.BatchNorm2d(dimensions)
|
77 |
+
)
|
78 |
+
|
79 |
+
self.W_x = nn.Sequential(
|
80 |
+
nn.Conv2d(F_l, dimensions, kernel_size=1, stride=1, padding=0, bias=True),
|
81 |
+
nn.BatchNorm2d(dimensions)
|
82 |
+
)
|
83 |
+
|
84 |
+
self.psi = nn.Sequential(
|
85 |
+
nn.Conv2d(dimensions, 1, kernel_size=1, stride=1, padding=0, bias=True),
|
86 |
+
nn.BatchNorm2d(1),
|
87 |
+
nn.Sigmoid()
|
88 |
+
)
|
89 |
+
|
90 |
+
self.relu = nn.PReLU()
|
91 |
+
|
92 |
+
def forward(self, g, x):
|
93 |
+
g1 = self.W_gate(g)
|
94 |
+
x1 = self.W_x(x)
|
95 |
+
psi = self.relu(g1 + x1)
|
96 |
+
psi = self.psi(psi)
|
97 |
+
out = x * psi
|
98 |
+
return out
|
99 |
+
|
100 |
+
class UNetUpConvBlock(nn.Module):
|
101 |
+
def __init__(self, in_channel, out_channel, upmode, ca_layer, up_factor = 2, att_mode = "standard"):
|
102 |
+
super(UNetUpConvBlock, self).__init__()
|
103 |
+
self.att_mode = att_mode
|
104 |
+
self.ca_layer = ca_layer
|
105 |
+
if upmode == 'upsample':
|
106 |
+
self.Upsize = nn.Sequential(
|
107 |
+
nn.Upsample(scale_factor=up_factor, mode='bilinear', align_corners=False),
|
108 |
+
nn.Conv2d(in_channel, out_channel, kernel_size=1, stride=1, padding=0),
|
109 |
+
)
|
110 |
+
elif upmode == 'upconv':
|
111 |
+
self.Upsize = nn.ConvTranspose2d(in_channel,out_channel,kernel_size=2,stride = 2)
|
112 |
+
elif upmode == 'shuffle':
|
113 |
+
self.Upsize = nn.Sequential(
|
114 |
+
nn.Conv2d(in_channel,out_channel*4,kernel_size=3,stride=1,padding=1),
|
115 |
+
nn.PReLU(),
|
116 |
+
nn.PixelShuffle(2),
|
117 |
+
nn.Conv2d(out_channel,out_channel,kernel_size=3,stride = 1,padding=1)
|
118 |
+
)
|
119 |
+
|
120 |
+
|
121 |
+
# self.conv = UNetConvBlock(in_channel, out_channel)
|
122 |
+
if self.att_mode == 'standard':
|
123 |
+
self.attention_gate = AttentionGate(out_channel, out_channel, out_channel)
|
124 |
+
self.conv = UNetConvBlock(in_channel, out_channel, ca_layer=self.ca_layer)
|
125 |
+
elif self.att_mode == 'modified':
|
126 |
+
self.attention_gate = AttentionGate(out_channel, out_channel, out_channel )
|
127 |
+
self.conv = UNetConvBlock(3*out_channel, out_channel, ca_layer = self.ca_layer)
|
128 |
+
elif self.att_mode == 'None':
|
129 |
+
self.conv = UNetConvBlock(in_channel, out_channel, ca_layer=self.ca_layer)
|
130 |
+
|
131 |
+
|
132 |
+
|
133 |
+
def forward(self, x, residue):
|
134 |
+
x = self.Upsize(x)
|
135 |
+
x = F.interpolate(x, size=residue.shape[2:], mode='bilinear')
|
136 |
+
if self.att_mode == "standard":
|
137 |
+
attn = self.attention_gate(g = x, x=residue)
|
138 |
+
out = torch.cat([x, attn],dim = 1)
|
139 |
+
out = self.conv(out)
|
140 |
+
elif self.att_mode == 'modified':
|
141 |
+
attn = self.attention_gate(g = x, x = residue)
|
142 |
+
out = torch.cat([x,residue,attn],dim = 1)
|
143 |
+
out = self.conv(out)
|
144 |
+
elif self.att_mode == 'None':
|
145 |
+
out = torch.cat([x,residue], dim = 1)
|
146 |
+
out = self.conv(out)
|
147 |
+
return out
|
148 |
+
|
149 |
+
|
150 |
+
|
151 |
+
|
152 |
+
|
153 |
+
class AUNet(nn.Module):
|
154 |
+
def __init__(self,in_channels = 6,out_channels = 6,depth = 3,growth_factor = 6,
|
155 |
+
interp_mode = 'bicubic', up_mode = 'upconv',spatial_attention = "standard", ca_layer = True):
|
156 |
+
super(AUNet,self).__init__()
|
157 |
+
|
158 |
+
if not spatial_attention in ['None', 'modified', 'standard']:
|
159 |
+
raise AssertionError("spatial_attention options : \'None\'- no spatial attention, \'standard\'-spatial attention as in attention unet paper, \'modified\'-modified attention unet")
|
160 |
+
|
161 |
+
self.in_channels = in_channels
|
162 |
+
self.out_channels = out_channels
|
163 |
+
self.depth = depth
|
164 |
+
self.growth_factor = growth_factor
|
165 |
+
self.interp_mode = interp_mode
|
166 |
+
prev_channels = self.in_channels
|
167 |
+
self.up_mode = up_mode
|
168 |
+
self.att_mode = spatial_attention
|
169 |
+
self.ca_layer = ca_layer
|
170 |
+
|
171 |
+
self.encoding_module = nn.ModuleList()
|
172 |
+
for i in range(self.depth):
|
173 |
+
self.encoding_module.append(UNetConvBlock(in_channel=prev_channels,out_channel=2**(self.growth_factor + i), ca_layer=self.ca_layer))
|
174 |
+
prev_channels = 2**(self.growth_factor+i)
|
175 |
+
|
176 |
+
self.decoding_module = nn.ModuleList()
|
177 |
+
for i in reversed(range(self.depth-1)):
|
178 |
+
self.decoding_module.append(UNetUpConvBlock(prev_channels,2**(self.growth_factor+i),upmode = self.up_mode, att_mode = self.att_mode, ca_layer = self.ca_layer))
|
179 |
+
prev_channels = 2**(self.growth_factor+i)
|
180 |
+
|
181 |
+
self.final = nn.Conv2d(prev_channels,out_channels,1,1,0)
|
182 |
+
|
183 |
+
def forward(self,MS,PAN = None):
|
184 |
+
if PAN == None:
|
185 |
+
x = MS
|
186 |
+
else:
|
187 |
+
x = torch.cat([MS,PAN],dim = 1)
|
188 |
+
blocks = []
|
189 |
+
for i,down in enumerate(self.encoding_module):
|
190 |
+
x = down(x)
|
191 |
+
if i != len(self.encoding_module)-1:
|
192 |
+
blocks.append(x)
|
193 |
+
x = F.avg_pool2d(x,2)
|
194 |
+
|
195 |
+
for i,up in enumerate(self.decoding_module):
|
196 |
+
x = up(x,blocks[-i-1])
|
197 |
+
|
198 |
+
x = self.final(x)
|
199 |
+
return x
|
200 |
+
|
201 |
+
|
202 |
+
if __name__ == '__main__':
|
203 |
+
x = torch.rand([9,7,256,256]).cuda()
|
204 |
+
model = AUNet(in_channels=7, out_channels=6, depth=5, spatial_attention="modified", growth_factor=6,
|
205 |
+
interp_mode='bilinear', up_mode='upconv', ca_layer=True).cuda()
|
206 |
+
x = model(x)
|
207 |
+
# print(model)
|
208 |
+
|
209 |
+
|
210 |
+
activation = {}
|
211 |
+
for layer in model:
|
212 |
+
print(layer)
|
AUNetConfig.py
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig
|
2 |
+
from typing import List
|
3 |
+
|
4 |
+
|
5 |
+
class AUNetConfig(PretrainedConfig):
|
6 |
+
model_type = "s2l8hModel"
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
in_channels:int = 7,
|
10 |
+
out_channels:int = 6,
|
11 |
+
depth:int = 5,
|
12 |
+
spatial_attention:str = 'None',
|
13 |
+
growth_factor:int = 6,
|
14 |
+
interp_mode:str = 'bicubic',
|
15 |
+
up_mode:str = 'upsample',
|
16 |
+
ca_layer:bool = False,
|
17 |
+
**kwargs,
|
18 |
+
):
|
19 |
+
self.in_channels = in_channels
|
20 |
+
self.out_channels = out_channels
|
21 |
+
self.depth = depth
|
22 |
+
self.spatial_attention = spatial_attention
|
23 |
+
self.growth_factor = growth_factor
|
24 |
+
self.interp_mode = interp_mode
|
25 |
+
self.up_mode = up_mode
|
26 |
+
self.ca_layer = ca_layer
|
27 |
+
|
28 |
+
super().__init__(**kwargs)
|
config.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"s2l8hModel"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "AUNetConfig.AUNetConfig",
|
7 |
+
"AutoModel": "s2l8hModel.s2l8hModel"
|
8 |
+
},
|
9 |
+
"ca_layer": false,
|
10 |
+
"depth": 6,
|
11 |
+
"growth_factor": 6,
|
12 |
+
"in_channels": 7,
|
13 |
+
"interp_mode": "bicubic",
|
14 |
+
"model_type": "s2l8hModel",
|
15 |
+
"out_channels": 6,
|
16 |
+
"spatial_attention": "None",
|
17 |
+
"torch_dtype": "float32",
|
18 |
+
"transformers_version": "4.33.1",
|
19 |
+
"up_mode": "shuffle"
|
20 |
+
}
|
pytorch_model.bin
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:82635bc9412abb0a379183b6a8a3c18f8a833bb8dd628e4d38d215cf6b3e6d2c
|
3 |
+
size 905367560
|
s2l8hModel.py
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PreTrainedModel
|
2 |
+
from .AUNet import AUNet
|
3 |
+
from .AUNetConfig import AUNetConfig
|
4 |
+
import torch
|
5 |
+
|
6 |
+
class s2l8hModel(PreTrainedModel):
|
7 |
+
config_class=AUNetConfig
|
8 |
+
|
9 |
+
def __init__(self, config):
|
10 |
+
super().__init__(config)
|
11 |
+
self.model = AUNet(
|
12 |
+
in_channels = config.in_channels, out_channels = config.out_channels,
|
13 |
+
depth = config.depth, spatial_attention = config.spatial_attention,
|
14 |
+
growth_factor = config.growth_factor, interp_mode = config.interp_mode,
|
15 |
+
up_mode = config.up_mode, ca_layer = config.ca_layer
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
def forward(self, MS, PAN):
|
20 |
+
return self.model.forward(MS, PAN)
|