File size: 2,436 Bytes
0926ffb 046c030 16403b2 0926ffb a9e28a9 16403b2 c85fa35 16403b2 046c030 16403b2 046c030 16403b2 a9e28a9 16403b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
base_model:
- upstage/SOLAR-10.7B-Instruct-v1.0
- NousResearch/Nous-Hermes-2-SOLAR-10.7B
tags:
- mergekit
- merge
- solar
license: apache-2.0
---
# vicgalle/franken-SOLAR-18B-v1.0
This is a SOLAR-like model upscaled to 18B.
It is a frankenmerge model created using mergekit, alternating layers of Nous-Hermes-2-SOLAR-10.7B and SOLAR-10.7B-Instruct.
![image/png](https://cdn-uploads.huggingface.co/production/uploads/5fad8602b8423e1d80b8a965/mMyHMuuftG71_o4at5suy.png)
Evaluations coming soon!
This model has very good writing capabilities (compared to SOLAR-10.7B), specially for role-playing.
## Merge Details
### Merge Method
This model was merged using the passthrough merge method.
### Models Merged
The following models were included in the merge:
* [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0)
* [NousResearch/Nous-Hermes-2-SOLAR-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B)
### Configuration
The following YAML configuration was used to produce this model:
```yaml
slices:
- sources:
- model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
layer_range: [0, 12]
- sources:
- model: upstage/SOLAR-10.7B-Instruct-v1.0
layer_range: [6, 18]
- sources:
- model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
layer_range: [13, 25]
- sources:
- model: upstage/SOLAR-10.7B-Instruct-v1.0
layer_range: [19, 31]
- sources:
- model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
layer_range: [26, 38]
- sources:
- model: upstage/SOLAR-10.7B-Instruct-v1.0
layer_range: [32, 44]
- sources:
- model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
layer_range: [39, 48]
merge_method: passthrough
dtype: float16
```
### Usage
You can use the provided template:
```
tokenizer = AutoTokenizer.from_pretrained("vicgalle/franken-SOLAR-18B-v1.0")
model = AutoModelForCausalLM.from_pretrained("vicgalle/franken-SOLAR-18B-v1.0", torch_dtype=torch.float16, load_in_4bit=True)
conversation = [ {'role': 'system', 'content': SYSTEM_PROMPT}, {'role': 'user', 'content': USER_PROMPT} ]
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, use_cache=True, max_new_tokens=1024, do_sample=True, temperature=0.8)
output_text = tokenizer.decode(outputs[0])
```
|