File size: 5,848 Bytes
0926ffb
67b1aaf
046c030
 
 
16403b2
67b1aaf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0926ffb
a9e28a9
16403b2
 
 
 
c85fa35
 
16403b2
046c030
16403b2
046c030
03c5412
 
046c030
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
16403b2
 
 
 
 
 
 
a9e28a9
 
16403b2
 
 
 
 
 
 
 
67b1aaf
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
---
license: apache-2.0
tags:
- mergekit
- merge
- solar
base_model:
- upstage/SOLAR-10.7B-Instruct-v1.0
- NousResearch/Nous-Hermes-2-SOLAR-10.7B
model-index:
- name: franken-SOLAR-18B-v1.0
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 65.53
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 86.45
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 63.72
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 62.14
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 78.53
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 45.79
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=vicgalle/franken-SOLAR-18B-v1.0
      name: Open LLM Leaderboard
---
# vicgalle/franken-SOLAR-18B-v1.0

This is a SOLAR-like model upscaled to 18B. 
It is a frankenmerge model created using mergekit, alternating layers of Nous-Hermes-2-SOLAR-10.7B and SOLAR-10.7B-Instruct.

![image/png](https://cdn-uploads.huggingface.co/production/uploads/5fad8602b8423e1d80b8a965/mMyHMuuftG71_o4at5suy.png)

Evaluations coming soon! 

This model has very good writing capabilities (compared to SOLAR-10.7B), specially for role-playing.

Quantized GGUF variants here https://huggingface.co/vicgalle/franken-SOLAR-18B-v1.0-GGUF

## Merge Details
### Merge Method

This model was merged using the passthrough merge method.

### Models Merged

The following models were included in the merge:
* [upstage/SOLAR-10.7B-Instruct-v1.0](https://huggingface.co/upstage/SOLAR-10.7B-Instruct-v1.0)
* [NousResearch/Nous-Hermes-2-SOLAR-10.7B](https://huggingface.co/NousResearch/Nous-Hermes-2-SOLAR-10.7B)

### Configuration

The following YAML configuration was used to produce this model:

```yaml
slices:
  - sources:
    - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
      layer_range: [0, 12]
  - sources:
    - model: upstage/SOLAR-10.7B-Instruct-v1.0
      layer_range: [6, 18]
  - sources:
    - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
      layer_range: [13, 25]
  - sources:
    - model: upstage/SOLAR-10.7B-Instruct-v1.0
      layer_range: [19, 31]
  - sources:
    - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
      layer_range: [26, 38]
  - sources:
    - model: upstage/SOLAR-10.7B-Instruct-v1.0
      layer_range: [32, 44]
  - sources:
    - model: NousResearch/Nous-Hermes-2-SOLAR-10.7B
      layer_range: [39, 48]
    
merge_method: passthrough
dtype: float16

```


### Usage

You can use the provided template:

```
tokenizer = AutoTokenizer.from_pretrained("vicgalle/franken-SOLAR-18B-v1.0")
model = AutoModelForCausalLM.from_pretrained("vicgalle/franken-SOLAR-18B-v1.0", torch_dtype=torch.float16, load_in_4bit=True)

conversation = [ {'role': 'system', 'content': SYSTEM_PROMPT}, {'role': 'user', 'content': USER_PROMPT} ] 
prompt = tokenizer.apply_chat_template(conversation, tokenize=False, add_generation_prompt=True)
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

outputs = model.generate(**inputs, use_cache=True, max_new_tokens=1024, do_sample=True, temperature=0.8)
output_text = tokenizer.decode(outputs[0]) 
```

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_vicgalle__franken-SOLAR-18B-v1.0)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |67.03|
|AI2 Reasoning Challenge (25-Shot)|65.53|
|HellaSwag (10-Shot)              |86.45|
|MMLU (5-Shot)                    |63.72|
|TruthfulQA (0-shot)              |62.14|
|Winogrande (5-shot)              |78.53|
|GSM8k (5-shot)                   |45.79|