File size: 6,136 Bytes
8353c3b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
---
base_model: LeroyDyer/LCARS_AI_DeepMind
datasets:
- gretelai/synthetic_text_to_sql
- HuggingFaceTB/cosmopedia
- teknium/OpenHermes-2.5
- Open-Orca/SlimOrca
- Open-Orca/OpenOrca
- cognitivecomputations/dolphin-coder
- databricks/databricks-dolly-15k
- yahma/alpaca-cleaned
- uonlp/CulturaX
- mwitiderrick/SwahiliPlatypus
- swahili
- Rogendo/English-Swahili-Sentence-Pairs
- ise-uiuc/Magicoder-Evol-Instruct-110K
- meta-math/MetaMathQA
- abacusai/ARC_DPO_FewShot
- abacusai/MetaMath_DPO_FewShot
- abacusai/HellaSwag_DPO_FewShot
- HaltiaAI/Her-The-Movie-Samantha-and-Theodore-Dataset
- gretelai/synthetic_text_to_sql
- HuggingFaceTB/cosmopedia
- teknium/OpenHermes-2.5
- cognitivecomputations/dolphin-coder
- databricks/databricks-dolly-15k
- yahma/alpaca-cleaned
- uonlp/CulturaX
- mwitiderrick/SwahiliPlatypus
- swahili
- Rogendo/English-Swahili-Sentence-Pairs
- ise-uiuc/Magicoder-Evol-Instruct-110K
- meta-math/MetaMathQA
language:
- en
license: apache-2.0
metrics:
- accuracy
- bertscore
- bleu
- brier_score
- cer
- character
- charcut_mt
- chrf
- code_eval
tags:
- text-generation-inference
- transformers
- leaderboard
- mistral
- trl
- llama-cpp
- gguf-my-repo
y-Gene:
- LeroyDyer/Mixtral_AI_DeepMind
- LeroyDyer/Mixtral_AI_CyberUltron_DPO
- LeroyDyer/Mixtral_AI_Chat_2.0
- LeroyDyer/Mixtral_AI_DeepMedicalMind
- LeroyDyer/Mixtral_AI_Samantha
x-Gene:
- LeroyDyer/Mixtral_AI_Chat_2.0
- LeroyDyer/Mixtral_BioMedical
- LeroyDyer/Mixtral_AI_Medic
- LeroyDyer/Mixtral_Cyber_BioMedic
- LeroyDyer/Mixtral_AI_DeepMedicalMind
Variant:
- LeroyDyer/MetaMath_LLM
- LeroyDyer/TruthfulQA_LLM
- LeroyDyer/HellaSwag_LLM
- LeroyDyer/Mixtral_AI_DeepMedicalMind
model-index:
- name: Mixtral_AI_CyberTron_DeepMind_III_UFT
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 61.86
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 83.15
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 61.95
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 49.41
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 77.98
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 51.86
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=LeroyDyer/Mixtral_AI_CyberTron_DeepMind_III_UFT
      name: Open LLM Leaderboard
---

# victorbur/LCARS_AI_DeepMind-Q3_K_M-GGUF
This model was converted to GGUF format from [`LeroyDyer/LCARS_AI_DeepMind`](https://huggingface.co/LeroyDyer/LCARS_AI_DeepMind) using llama.cpp via the ggml.ai's [GGUF-my-repo](https://huggingface.co/spaces/ggml-org/gguf-my-repo) space.
Refer to the [original model card](https://huggingface.co/LeroyDyer/LCARS_AI_DeepMind) for more details on the model.

## Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)

```bash
brew install llama.cpp

```
Invoke the llama.cpp server or the CLI.

### CLI:
```bash
llama-cli --hf-repo victorbur/LCARS_AI_DeepMind-Q3_K_M-GGUF --hf-file lcars_ai_deepmind-q3_k_m.gguf -p "The meaning to life and the universe is"
```

### Server:
```bash
llama-server --hf-repo victorbur/LCARS_AI_DeepMind-Q3_K_M-GGUF --hf-file lcars_ai_deepmind-q3_k_m.gguf -c 2048
```

Note: You can also use this checkpoint directly through the [usage steps](https://github.com/ggerganov/llama.cpp?tab=readme-ov-file#usage) listed in the Llama.cpp repo as well.

Step 1: Clone llama.cpp from GitHub.
```
git clone https://github.com/ggerganov/llama.cpp
```

Step 2: Move into the llama.cpp folder and build it with `LLAMA_CURL=1` flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
```
cd llama.cpp && LLAMA_CURL=1 make
```

Step 3: Run inference through the main binary.
```
./llama-cli --hf-repo victorbur/LCARS_AI_DeepMind-Q3_K_M-GGUF --hf-file lcars_ai_deepmind-q3_k_m.gguf -p "The meaning to life and the universe is"
```
or 
```
./llama-server --hf-repo victorbur/LCARS_AI_DeepMind-Q3_K_M-GGUF --hf-file lcars_ai_deepmind-q3_k_m.gguf -c 2048
```