ColPali
Safetensors
English
paligemma
vidore-experimental
tonywu71 commited on
Commit
a8497ed
·
verified ·
1 Parent(s): 89fd973

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +95 -163
README.md CHANGED
@@ -1,199 +1,131 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
4
  ---
 
5
 
6
- # Model Card for Model ID
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
 
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
- ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
 
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
 
 
 
 
 
51
 
52
- ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
 
 
 
 
 
 
 
 
55
 
56
- [More Information Needed]
 
 
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
 
73
 
74
- [More Information Needed]
75
 
76
- ## Training Details
77
 
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: mit
3
+ library_name: colpali
4
+ base_model: vidore/colpaligemma-3b-pt-448-base
5
+ language:
6
+ - en
7
+ tags:
8
+ - vidore
9
+ datasets:
10
+ - vidore/colpali_train_set
11
  ---
12
+ # ColPali: Visual Retriever based on PaliGemma-3B with ColBERT strategy
13
 
14
+ ColPali is a model based on a novel model architecture and training strategy based on Vision Language Models (VLMs) to efficiently index documents from their visual features.
15
+ It is a [PaliGemma-3B](https://huggingface.co/google/paligemma-3b-mix-448) extension that generates [ColBERT](https://arxiv.org/abs/2004.12832)- style multi-vector representations of text and images.
16
+ It was introduced in the paper [ColPali: Efficient Document Retrieval with Vision Language Models](https://arxiv.org/abs/2407.01449) and first released in [this repository](https://github.com/ManuelFay/colpali)
17
 
18
+ <p align="center"><img width=800 src="https://github.com/illuin-tech/colpali/blob/main/assets/colpali_architecture.webp?raw=true"/></p>
19
 
20
+ ## Version specificity
21
 
22
+ > [!NOTE]
23
+ > This version is similar to [`vidore/colpali-v1.2`](https://huggingface.co/vidore/colpali-v1.2), except that the LoRA adapter was merged into the base model. Thus, loading ColPali from this checkpoint saves you the trouble of merging the pre-trained adapter yourself.
24
+ >
25
+ > This can be useful if you want to train a new adpter from scratch.
26
 
27
+ ## Model Description
28
 
29
+ This model is built iteratively starting from an off-the-shelf [SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) model.
30
+ We finetuned it to create [BiSigLIP](https://huggingface.co/vidore/bisiglip) and fed the patch-embeddings output by SigLIP to an LLM, [PaliGemma-3B](https://huggingface.co/google/paligemma-3b-mix-448) to create [BiPali](https://huggingface.co/vidore/bipali).
31
 
32
+ One benefit of inputting image patch embeddings through a language model is that they are natively mapped to a latent space similar to textual input (query).
33
+ This enables leveraging the [ColBERT](https://arxiv.org/abs/2004.12832) strategy to compute interactions between text tokens and image patches, which enables a step-change improvement in performance compared to BiPali.
34
 
35
+ ## Model Training
36
 
37
+ ### Dataset
38
+ Our training dataset of 127,460 query-page pairs is comprised of train sets of openly available academic datasets (63%) and a synthetic dataset made up of pages from web-crawled PDF documents and augmented with VLM-generated (Claude-3 Sonnet) pseudo-questions (37%).
39
+ Our training set is fully English by design, enabling us to study zero-shot generalization to non-English languages. We explicitly verify no multi-page PDF document is used both [*ViDoRe*](https://huggingface.co/collections/vidore/vidore-benchmark-667173f98e70a1c0fa4db00d) and in the train set to prevent evaluation contamination.
40
+ A validation set is created with 2% of the samples to tune hyperparameters.
 
 
 
41
 
42
+ *Note: Multilingual data is present in the pretraining corpus of the language model (Gemma-2B) and potentially occurs during PaliGemma-3B's multimodal training.*
43
 
44
+ ### Parameters
45
 
46
+ All models are trained for 1 epoch on the train set. Unless specified otherwise, we train models in `bfloat16` format, use low-rank adapters ([LoRA](https://arxiv.org/abs/2106.09685))
47
+ with `alpha=32` and `r=32` on the transformer layers from the language model,
48
+ as well as the final randomly initialized projection layer, and use a `paged_adamw_8bit` optimizer.
49
+ We train on an 8 GPU setup with data parallelism, a learning rate of 5e-5 with linear decay with 2.5% warmup steps, and a batch size of 32.
50
 
51
+ ## Usage
52
 
53
+ Install [`colpali-engine`](https://github.com/illuin-tech/colpali):
54
 
55
+ ```bash
56
+ pip install colpali-engine>=0.3.0,<0.4.0
57
+ ```
58
 
59
+ Then run the following code:
60
 
61
+ ```python
62
+ from typing import cast
63
 
64
+ import torch
65
+ from PIL import Image
66
 
67
+ from colpali_engine.models import ColPali, ColPaliProcessor
68
 
69
+ model = cast(
70
+ ColPali,
71
+ ColPali.from_pretrained(
72
+ "vidore/colpali-v1.2",
73
+ torch_dtype=torch.bfloat16,
74
+ device_map="cuda:0", # or "mps" if on Apple Silicon
75
+ ),
76
+ )
77
 
78
+ processor = cast(ColPaliProcessor, ColPaliProcessor.from_pretrained("google/paligemma-3b-mix-448"))
79
 
80
+ # Your inputs
81
+ images = [
82
+ Image.new("RGB", (32, 32), color="white"),
83
+ Image.new("RGB", (16, 16), color="black"),
84
+ ]
85
+ queries = [
86
+ "Is attention really all you need?",
87
+ "Are Benjamin, Antoine, Merve, and Jo best friends?",
88
+ ]
89
 
90
+ # Process the inputs
91
+ batch_images = processor.process_images(images).to(model.device)
92
+ batch_queries = processor.process_queries(queries).to(model.device)
93
 
94
+ # Forward pass
95
+ with torch.no_grad():
96
+ image_embeddings = model(**batch_images)
97
+ querry_embeddings = model(**batch_queries)
98
 
99
+ scores = processor.score_multi_vector(querry_embeddings, image_embeddings)
100
+ ```
101
 
102
+ ## Limitations
103
 
104
+ - **Focus**: The model primarily focuses on PDF-type documents and high-ressources languages, potentially limiting its generalization to other document types or less represented languages.
105
+ - **Support**: The model relies on multi-vector retreiving derived from the ColBERT late interaction mechanism, which may require engineering efforts to adapt to widely used vector retrieval frameworks that lack native multi-vector support.
106
 
107
+ ## License
108
 
109
+ ColPali's vision language backbone model (PaliGemma) is under `gemma` license as specified in its [model card](https://huggingface.co/google/paligemma-3b-mix-448). The adapters attached to the model are under MIT license.
110
 
111
+ ## Contact
112
 
113
+ - Manuel Faysse: manuel.[email protected]
114
+ - Hugues Sibille: [email protected]
115
+ - Tony Wu: [email protected]
116
 
117
+ ## Citation
118
 
119
+ If you use any datasets or models from this organization in your research, please cite the original dataset as follows:
120
 
121
+ ```bibtex
122
+ @misc{faysse2024colpaliefficientdocumentretrieval,
123
+ title={ColPali: Efficient Document Retrieval with Vision Language Models},
124
+ author={Manuel Faysse and Hugues Sibille and Tony Wu and Bilel Omrani and Gautier Viaud and Céline Hudelot and Pierre Colombo},
125
+ year={2024},
126
+ eprint={2407.01449},
127
+ archivePrefix={arXiv},
128
+ primaryClass={cs.IR},
129
+ url={https://arxiv.org/abs/2407.01449},
130
+ }
131
+ ```