File size: 5,762 Bytes
36b0403 195edc9 36b0403 a6adf09 86bc315 a6adf09 86bc315 a6adf09 86bc315 a6adf09 86bc315 a6adf09 86bc315 a6adf09 86bc315 a6adf09 86bc315 a6adf09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
This is the converted model from Unbabel/wmt22-cometkiwi-da
1) Just kept the weights/bias keys()
2) Renamed the keys to match the original Facebook/XLM-roberta-large
3) kept the layer_wise_attention / estimator layers
Because of a hack in HF's code I had to rename the "layerwise_attention.gamma" key to "layerwise_attention.gam"
I changed the config.json key "layer_transformation" from sparsemax to softmax because there is a bug in COMET since the flag is not passed, the actual function used is the default which is softmax.
Usage:
```
from transformers import XLMRobertaTokenizer, XLMRobertaTokenizerFast, AutoModel
tokenizer = XLMRobertaTokenizerFast.from_pretrained("vince62s/wmt22-cometkiwi-da-roberta-large", trust_remote_code=True)
model = AutoModel.from_pretrained("vince62s/wmt22-cometkiwi-da-roberta-large", trust_remote_code=True)
text = "Hello world! </s> </s> Bonjour le monde"
encoded_text = tokenizer(text, return_tensors='pt')
print(encoded_text)
output = model(**encoded_text)
print(output[0])
{'input_ids': tensor([[ 0, 35378, 8999, 38, 2, 2, 84602, 95, 11146, 2]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1]])}
tensor([[0.8640]], grad_fn=<AddmmBackward0>)
```
Let's double check with the original code from Unbabel Comet:
```
from comet import download_model, load_from_checkpoint
model = load_from_checkpoint("/home/vincent/Downloads/cometkiwi22/checkpoints/model.ckpt") # this is the Unbabel checkpoint
data = [{"mt": "Hello world!", "src": "Bonjour le monde"}]
output = model.predict(data, gpus=0)
print(output)
Prediction([('scores', [0.863973081111908]),
('system_score', 0.863973081111908)])
```
---
extra_gated_heading: Acknowledge license to accept the repository
extra_gated_button_content: Acknowledge license
pipeline_tag: translation
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: cc-by-nc-sa-4.0
library_name: transformers
---
This is a [COMET](https://github.com/Unbabel/COMET) quality estimation model: It receives a source sentence and the respective translation and returns a score that reflects the quality of the translation.
# Paper
[CometKiwi: IST-Unbabel 2022 Submission for the Quality Estimation Shared Task](https://aclanthology.org/2022.wmt-1.60) (Rei et al., WMT 2022)
# License:
cc-by-nc-sa-4.0
# Usage (unbabel-comet)
Using this model requires unbabel-comet to be installed:
```bash
pip install --upgrade pip # ensures that pip is current
pip install "unbabel-comet>=2.0.0"
```
Make sure you acknowledge its License and Log in into Hugging face hub before using:
```bash
huggingface-cli login
# or using an environment variable
huggingface-cli login --token $HUGGINGFACE_TOKEN
```
Then you can use it through comet CLI:
```bash
comet-score -s {source-input}.txt -t {translation-output}.txt --model Unbabel/wmt22-cometkiwi-da
```
Or using Python:
```python
from comet import download_model, load_from_checkpoint
model_path = download_model("Unbabel/wmt22-cometkiwi-da")
model = load_from_checkpoint(model_path)
data = [
{
"src": "The output signal provides constant sync so the display never glitches.",
"mt": "Das Ausgangssignal bietet eine konstante Synchronisation, so dass die Anzeige nie stört."
},
{
"src": "Kroužek ilustrace je určen všem milovníkům umění ve věku od 10 do 15 let.",
"mt": "Кільце ілюстрації призначене для всіх любителів мистецтва у віці від 10 до 15 років."
},
{
"src": "Mandela then became South Africa's first black president after his African National Congress party won the 1994 election.",
"mt": "その後、1994年の選挙でアフリカ国民会議派が勝利し、南アフリカ初の黒人大統領となった。"
}
]
model_output = model.predict(data, batch_size=8, gpus=1)
print (model_output)
```
# Intended uses
Our model is intented to be used for **reference-free MT evaluation**.
Given a source text and its translation, outputs a single score between 0 and 1 where 1 represents a perfect translation.
# Languages Covered:
This model builds on top of InfoXLM which cover the following languages:
Afrikaans, Albanian, Amharic, Arabic, Armenian, Assamese, Azerbaijani, Basque, Belarusian, Bengali, Bengali Romanized, Bosnian, Breton, Bulgarian, Burmese, Burmese, Catalan, Chinese (Simplified), Chinese (Traditional), Croatian, Czech, Danish, Dutch, English, Esperanto, Estonian, Filipino, Finnish, French, Galician, Georgian, German, Greek, Gujarati, Hausa, Hebrew, Hindi, Hindi Romanized, Hungarian, Icelandic, Indonesian, Irish, Italian, Japanese, Javanese, Kannada, Kazakh, Khmer, Korean, Kurdish (Kurmanji), Kyrgyz, Lao, Latin, Latvian, Lithuanian, Macedonian, Malagasy, Malay, Malayalam, Marathi, Mongolian, Nepali, Norwegian, Oriya, Oromo, Pashto, Persian, Polish, Portuguese, Punjabi, Romanian, Russian, Sanskri, Scottish, Gaelic, Serbian, Sindhi, Sinhala, Slovak, Slovenian, Somali, Spanish, Sundanese, Swahili, Swedish, Tamil, Tamil Romanized, Telugu, Telugu Romanized, Thai, Turkish, Ukrainian, Urdu, Urdu Romanized, Uyghur, Uzbek, Vietnamese, Welsh, Western, Frisian, Xhosa, Yiddish.
Thus, results for language pairs containing uncovered languages are unreliable! |