File size: 2,994 Bytes
cdeb929
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
---
license: mit
library_name: peft
tags:
- trl
- orpo
- generated_from_trainer
base_model: microsoft/Phi-3-mini-128k-instruct
model-index:
- name: orpo-phi
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# orpo-phi

This model is a fine-tuned version of [microsoft/Phi-3-mini-128k-instruct](https://huggingface.co/microsoft/Phi-3-mini-128k-instruct) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 1.3298
- Rewards/chosen: -0.1126
- Rewards/rejected: -0.1126
- Rewards/accuracies: 0.0
- Rewards/margins: 0.0
- Logps/rejected: -1.1264
- Logps/chosen: -1.1264
- Logits/rejected: 4.2177
- Logits/chosen: 4.2177
- Nll Loss: 1.2605
- Log Odds Ratio: -0.6931
- Log Odds Chosen: 0.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 8e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 10
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Nll Loss | Log Odds Ratio | Log Odds Chosen |
|:-------------:|:-----:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:--------------:|:---------------:|
| 3.4409        | 0.24  | 3    | 1.3298          | -0.1126        | -0.1126          | 0.0                | 0.0             | -1.1264        | -1.1264      | 4.2177          | 4.2177        | 1.2605   | -0.6931        | 0.0             |
| 2.909         | 0.48  | 6    | 1.3298          | -0.1126        | -0.1126          | 0.0                | 0.0             | -1.1264        | -1.1264      | 4.2177          | 4.2177        | 1.2605   | -0.6931        | 0.0             |
| 2.633         | 0.72  | 9    | 1.3298          | -0.1126        | -0.1126          | 0.0                | 0.0             | -1.1264        | -1.1264      | 4.2177          | 4.2177        | 1.2605   | -0.6931        | 0.0             |
| 3.3955        | 0.96  | 12   | 1.3298          | -0.1126        | -0.1126          | 0.0                | 0.0             | -1.1264        | -1.1264      | 4.2177          | 4.2177        | 1.2605   | -0.6931        | 0.0             |


### Framework versions

- PEFT 0.11.1
- Transformers 4.41.1
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1