File size: 4,951 Bytes
cba1e44
 
 
 
 
 
 
 
 
 
995ee44
da8e70f
 
cba1e44
 
 
995ee44
cba1e44
 
 
 
 
 
 
995ee44
 
 
 
 
 
8c7fe04
995ee44
8c7fe04
 
 
 
 
 
995ee44
 
 
 
 
 
cba1e44
 
 
 
 
 
 
 
 
 
 
 
c20d32a
dc797b1
 
c20d32a
cba1e44
 
 
 
 
dece104
 
 
 
 
 
cba1e44
dece104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cba1e44
dece104
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
cba1e44
dece104
 
 
 
 
 
 
cba1e44
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
---
language:
- km
license: apache-2.0
tags:
- automatic-speech-recognition
- openslr
- robust-speech-event
- km
- generated_from_trainer
- hf-asr-leaderboard
datasets:
- openslr
model-index:
- name: wav2vec2-xls-r-1b-km
  results:
  - task:
      name: Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: OpenSLR km
      type: openslr
      args: km
    metrics:
    - name: Test WER
      type: wer
      value: 32.13
    - name: Test CER
      type: cer
      value: 9.35
  - task:
      name: Automatic Speech Recognition
      type: automatic-speech-recognition
    dataset:
      name: Robust Speech Event - Dev Data
      type: speech-recognition-community-v2/dev_data
      args: km
    metrics:
    - name: Test WER
      type: wer
      value: 32.13
    - name: Test CER
      type: cer
      value: 9.35
---
# 

This model is a fine-tuned version of [facebook/wav2vec2-xls-r-1b](https://huggingface.co/facebook/wav2vec2-xls-r-1b) on the openslr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4239
- Wer: 0.4221

# Evaluation results on OpenSLR "test" (self-split 10%) (Running ./eval.py):
- WER: 0.4490281634272114
- CER: 0.12198285179047481

# Evaluation results on OpenSLR "test" with LM ngram (self-split 10%) (Running ./eval.py):
- WER: 0.32130107100357
- CER: 0.09345053678218891

# Note
- Since this dataset is small (4 hours of voice recording), we decided not to train that for too long to avoid overfitting and under-generalization.
- This model performs worse than its 300M-variant. Probably, we don't explore the hyper-parameter enough?


## Installation
Install the following libraries on top of HuggingFace Transformers for the supports of language model.
```
pip install pyctcdecode
pip install https://github.com/kpu/kenlm/archive/master.zip
```

## Usage 

**Approach 1:** Using HuggingFace's pipeline, this will cover everything end-to-end from raw audio input to text output.
```python
from transformers import pipeline

# Load the model
pipe = pipeline(model="vitouphy/wav2vec2-xls-r-300m-khmer")

# Process raw audio
output = pipe("sound_file.wav", chunk_length_s=10, stride_length_s=(4, 2))
```

**Approach 2:** More custom way to predict phonemes.
```python
from transformers import Wav2Vec2Processor, Wav2Vec2ForCTC 
import librosa
import torch

# load model and processor
processor = Wav2Vec2Processor.from_pretrained("vitouphy/wav2vec2-xls-r-300m-khmer")
model = Wav2Vec2ForCTC.from_pretrained("vitouphy/wav2vec2-xls-r-300m-khmer")

# Read and process the input
speech_array, sampling_rate = librosa.load("sound_file.wav", sr=16_000)
inputs = processor(speech_array, sampling_rate=16_000, return_tensors="pt", padding=True)

with torch.no_grad():
    logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits

predicted_ids = torch.argmax(logits, axis=-1)      
predicted_sentences = processor.batch_decode(predicted_ids)
print(predicted_sentences)
```

## Intended uses & limitations

The data used for this model is only around 4 hours of recordings. 
- We split into 80/10/10. Hence, the training hour is 3.2 hours, which is very very small.
- Yet, its performance is not too bad. Quite interesting for such small dataset, actually. You can try it out.
- Its limitation is:
  - Rare characters, e.g. ឬស្សី ឪឡឹក 
  - Speech needs to be clear and articulate.
- More data to cover more vocabulary and character may help improve this system.


## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 2000
- num_epochs: 75
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Wer    |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 3.5671        | 5.47  | 400  | 12.0218         | 1.0    |
| 3.5159        | 10.95 | 800  | 10.6337         | 1.0    |
| 2.4543        | 16.43 | 1200 | 1.8256          | 0.9839 |
| 1.9437        | 21.91 | 1600 | 1.1237          | 0.9173 |
| 1.696         | 27.39 | 2000 | 0.8246          | 0.7700 |
| 1.5342        | 32.87 | 2400 | 0.6433          | 0.6594 |
| 1.4509        | 38.35 | 2800 | 0.5500          | 0.5787 |
| 1.3478        | 43.83 | 3200 | 0.5070          | 0.4907 |
| 1.3096        | 49.31 | 3600 | 0.4692          | 0.4726 |
| 1.2532        | 54.79 | 4000 | 0.4448          | 0.4479 |
| 1.2291        | 60.27 | 4400 | 0.4374          | 0.4366 |
| 1.196         | 65.75 | 4800 | 0.4314          | 0.4310 |
| 1.1862        | 71.23 | 5200 | 0.4239          | 0.4221 |


### Framework versions

- Transformers 4.17.0.dev0
- Pytorch 1.10.2+cu102
- Datasets 1.18.2.dev0
- Tokenizers 0.11.0