File size: 2,639 Bytes
46a6322
 
 
 
 
 
 
 
 
 
 
cdb8786
 
 
 
 
 
 
241ed54
 
cdb8786
 
 
534cb9b
dc7d2de
 
 
 
 
 
 
 
 
 
241ed54
 
 
 
46a6322
 
 
 
 
 
 
 
 
9a2fcc2
46a6322
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5f92b91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
241ed54
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
---
license: bigscience-bloom-rail-1.0
language:
- vi
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- bloom
- causal-lm
- pytorch
model-index:
- name: vlsp-2023-vllm/hoa-7b
  results:
  - task:
      name: Word prediction
      type: text-generation
    dataset:
      type: vlsp-2023-vllm/vi_lambada
      name: vi_lambada
      split: test
    metrics:
    - type: Perplexity
      value: 8.110657542682734
  - task:
      name: Fewshot Translation
      type: translation
    dataset:
      type: vlsp-2023-vllm/en-to-vi-formal-informal-tranlations
      name: English to Vietnamese Formal/Informal translation
      split: test
    metrics:
    - type: SacreBLEU
      value: 25.9
datasets:
- vlsp-2023-vllm/vi_lambada
metrics:
- perplexity
---

# Hoa 7B (Bloom architecture)

Hoa is an autoregressive Large Language Model (LLM), based on Bloom's model architecture. 
Hoa was trained on part of the Common Crawl dataset in Vietnamese and English.

Details will be available soon.

To contact us, mail to: [email protected] (Lê Anh Cường) | [email protected] (Hiếu) | [email protected] (Nguyễn Việt Cường)

### How to use 
```python
from transformers import AutoTokenizer, AutoModelForCausalLM

tokenizer = AutoTokenizer.from_pretrained("vlsp-2023-vllm/hoa-7b")
model = AutoModelForCausalLM.from_pretrained("vlsp-2023-vllm/hoa-7b", low_cpu_mem_usage=True)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 
model.to(device)

prompt = "Địa chỉ trường Đại học Tôn Đức Thắng nằm ở số"
input_ids = tokenizer(prompt, return_tensors="pt")['input_ids'].to(device)

gen_tokens = model.generate(input_ids, max_length=max_length, repetition_penalty=1.1)

print(tokenizer.batch_decode(gen_tokens)[0])
```

```
{
  "results": {
    "lambada_vi": {
      "ppl": 22.64664251438597,
      "ppl_stderr": 0.5810548407007641,
      "acc": 0.29679875073199297,
      "acc_stderr": 0.004513514788263131
    }
  },
  "versions": {
    "lambada_vi": null
  },
  "config": {
    "model": "hf-causal",
    "model_args": "pretrained=vlsp-2023-vllm/hoa-7b",
    "num_fewshot": 0,
    "batch_size": null,
    "batch_sizes": [],
    "device": "cuda:0",
    "no_cache": false,
    "limit": null,
    "bootstrap_iters": 100000,
    "description_dict": {}
  }
}
hf-causal (pretrained=vlsp-2023-vllm/hoa-7b), limit: None, provide_description: False, num_fewshot: 0, batch_size: None
|   Task   |Version|Metric| Value |   |Stderr|
|----------|-------|------|------:|---|-----:|
|lambada_vi|       |ppl   |22.6466|±  |0.5811|
|          |       |acc   | 0.2968|±  |0.0045|
```