File size: 2,447 Bytes
35a6149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f16453
35a6149
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f16453
35a6149
 
 
 
 
 
6f16453
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
35a6149
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
---
library_name: transformers
license: mit
base_model: danghuy1999/gpt2-viwiki
tags:
- generated_from_trainer
model-index:
- name: vietnamese-poem-gpt2-sauchu
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# vietnamese-poem-gpt2-sauchu

This model is a fine-tuned version of [danghuy1999/gpt2-viwiki](https://huggingface.co/danghuy1999/gpt2-viwiki) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 5.2482

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| No log        | 1.0   | 136  | 6.4141          |
| No log        | 2.0   | 272  | 6.0165          |
| No log        | 3.0   | 408  | 5.7615          |
| 6.3641        | 4.0   | 544  | 5.5938          |
| 6.3641        | 5.0   | 680  | 5.4852          |
| 6.3641        | 6.0   | 816  | 5.4277          |
| 6.3641        | 7.0   | 952  | 5.3807          |
| 5.418         | 8.0   | 1088 | 5.3497          |
| 5.418         | 9.0   | 1224 | 5.3235          |
| 5.418         | 10.0  | 1360 | 5.3024          |
| 5.418         | 11.0  | 1496 | 5.2961          |
| 5.1065        | 12.0  | 1632 | 5.2781          |
| 5.1065        | 13.0  | 1768 | 5.2753          |
| 5.1065        | 14.0  | 1904 | 5.2596          |
| 4.9363        | 15.0  | 2040 | 5.2568          |
| 4.9363        | 16.0  | 2176 | 5.2558          |
| 4.9363        | 17.0  | 2312 | 5.2497          |
| 4.9363        | 18.0  | 2448 | 5.2536          |
| 4.8312        | 19.0  | 2584 | 5.2485          |
| 4.8312        | 20.0  | 2720 | 5.2482          |


### Framework versions

- Transformers 4.47.1
- Pytorch 2.5.1+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0