voxxer commited on
Commit
6eb1199
·
1 Parent(s): f77e98b

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +24 -14
README.md CHANGED
@@ -22,7 +22,7 @@ model-index:
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
- value: 0.85
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -32,8 +32,8 @@ should probably proofread and complete it, then remove this comment. -->
32
 
33
  This model is a fine-tuned version of [bookbot/distil-ast-audioset](https://huggingface.co/bookbot/distil-ast-audioset) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
- - Loss: 0.6033
36
- - Accuracy: 0.85
37
 
38
  ## Model description
39
 
@@ -59,22 +59,32 @@ The following hyperparameters were used during training:
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
- - num_epochs: 10
63
 
64
  ### Training results
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
- | 1.2238 | 1.0 | 113 | 0.8023 | 0.75 |
69
- | 0.6623 | 2.0 | 226 | 0.6611 | 0.79 |
70
- | 0.9376 | 3.0 | 339 | 0.6243 | 0.81 |
71
- | 0.3924 | 4.0 | 452 | 0.6123 | 0.85 |
72
- | 0.2442 | 5.0 | 565 | 0.5983 | 0.83 |
73
- | 0.1408 | 6.0 | 678 | 0.6270 | 0.84 |
74
- | 0.2874 | 7.0 | 791 | 0.7019 | 0.78 |
75
- | 0.0177 | 8.0 | 904 | 0.6482 | 0.83 |
76
- | 0.036 | 9.0 | 1017 | 0.5012 | 0.88 |
77
- | 0.0013 | 10.0 | 1130 | 0.6033 | 0.85 |
 
 
 
 
 
 
 
 
 
 
78
 
79
 
80
  ### Framework versions
 
22
  metrics:
23
  - name: Accuracy
24
  type: accuracy
25
+ value: 0.9
26
  ---
27
 
28
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
32
 
33
  This model is a fine-tuned version of [bookbot/distil-ast-audioset](https://huggingface.co/bookbot/distil-ast-audioset) on the GTZAN dataset.
34
  It achieves the following results on the evaluation set:
35
+ - Loss: 0.5918
36
+ - Accuracy: 0.9
37
 
38
  ## Model description
39
 
 
59
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
60
  - lr_scheduler_type: linear
61
  - lr_scheduler_warmup_ratio: 0.1
62
+ - num_epochs: 20
63
 
64
  ### Training results
65
 
66
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
67
  |:-------------:|:-----:|:----:|:---------------:|:--------:|
68
+ | 0.9796 | 1.0 | 113 | 0.6252 | 0.85 |
69
+ | 0.7554 | 2.0 | 226 | 0.4882 | 0.86 |
70
+ | 0.5652 | 3.0 | 339 | 0.6223 | 0.77 |
71
+ | 0.193 | 4.0 | 452 | 0.6506 | 0.84 |
72
+ | 0.0392 | 5.0 | 565 | 0.7147 | 0.86 |
73
+ | 0.2759 | 6.0 | 678 | 0.8537 | 0.81 |
74
+ | 0.2412 | 7.0 | 791 | 0.6172 | 0.87 |
75
+ | 0.0648 | 8.0 | 904 | 0.6085 | 0.86 |
76
+ | 0.308 | 9.0 | 1017 | 0.7734 | 0.86 |
77
+ | 0.0002 | 10.0 | 1130 | 0.6427 | 0.88 |
78
+ | 0.0001 | 11.0 | 1243 | 0.6242 | 0.89 |
79
+ | 0.0 | 12.0 | 1356 | 0.5868 | 0.9 |
80
+ | 0.0001 | 13.0 | 1469 | 0.6369 | 0.9 |
81
+ | 0.0001 | 14.0 | 1582 | 0.6108 | 0.9 |
82
+ | 0.0001 | 15.0 | 1695 | 0.6002 | 0.9 |
83
+ | 0.0 | 16.0 | 1808 | 0.5925 | 0.9 |
84
+ | 0.0 | 17.0 | 1921 | 0.5898 | 0.9 |
85
+ | 0.0 | 18.0 | 2034 | 0.5877 | 0.9 |
86
+ | 0.0 | 19.0 | 2147 | 0.5926 | 0.9 |
87
+ | 0.0001 | 20.0 | 2260 | 0.5918 | 0.9 |
88
 
89
 
90
  ### Framework versions